From a8fe7b7fe0797894d2a5e6f29838a43afb710aa2 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Tue, 11 Feb 2020 09:32:12 +0100 Subject: [PATCH] rename _access -> _acc --- tests/ipm_paper.v | 2 +- theories/base_logic/lib/auth.v | 6 +++--- .../base_logic/lib/cancelable_invariants.v | 12 +++++------ theories/base_logic/lib/invariants.v | 20 +++++++++---------- theories/base_logic/lib/na_invariants.v | 4 ++-- theories/base_logic/lib/sts.v | 8 ++++---- theories/bi/lib/counterexamples.v | 4 ++-- 7 files changed, 28 insertions(+), 28 deletions(-) diff --git a/tests/ipm_paper.v b/tests/ipm_paper.v index 19a59fa93..5dad15580 100644 --- a/tests/ipm_paper.v +++ b/tests/ipm_paper.v @@ -112,7 +112,7 @@ Lemma wp_inv_open `{!irisG Λ Σ} N E P e Φ : inv N P ∗ (▷ P -∗ WP e @ E ∖ ↑N {{ v, ▷ P ∗ Φ v }}) ⊢ WP e @ E {{ Φ }}. Proof. iIntros (??) "[#Hinv Hwp]". - iMod (inv_access E N P with "Hinv") as "[HP Hclose]"=>//. + iMod (inv_acc E N P with "Hinv") as "[HP Hclose]"=>//. iApply wp_wand_r; iSplitL "HP Hwp"; [by iApply "Hwp"|]. iIntros (v) "[HP $]". by iApply "Hclose". Qed. diff --git a/theories/base_logic/lib/auth.v b/theories/base_logic/lib/auth.v index 6bb76bced..9e14b4cb3 100644 --- a/theories/base_logic/lib/auth.v +++ b/theories/base_logic/lib/auth.v @@ -147,7 +147,7 @@ Section auth. iModIntro. iFrame. iExists u. iFrame. Qed. - Lemma auth_access E N γ a : + Lemma auth_acc E N γ a : ↑N ⊆ E → auth_ctx γ N f φ ∗ auth_own γ a ={E,E∖↑N}=∗ ∃ t, ⌜a ≼ f t⌠∗ ▷ φ t ∗ ∀ u b, @@ -155,7 +155,7 @@ Section auth. Proof using Type*. iIntros (?) "[#? Hγf]". rewrite /auth_ctx. iInv N as "Hinv" "Hclose". (* The following is essentially a very trivial composition of the accessors - [auth_inv_acc] and [inv_access] -- but since we don't have any good support + [auth_inv_acc] and [inv_acc] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having to unpack and repack various proofs. TODO: Make this mostly automatic, by supporting "opening accessors @@ -166,4 +166,4 @@ Section auth. Qed. End auth. -Arguments auth_access {_ _ _} [_] {_} [_] _ _ _ _ _ _ _. +Arguments auth_acc {_ _ _} [_] {_} [_] _ _ _ _ _ _ _. diff --git a/theories/base_logic/lib/cancelable_invariants.v b/theories/base_logic/lib/cancelable_invariants.v index 03716dd2a..38f1a16b7 100644 --- a/theories/base_logic/lib/cancelable_invariants.v +++ b/theories/base_logic/lib/cancelable_invariants.v @@ -109,13 +109,13 @@ Section proofs. Qed. (*** Accessors *) - Lemma cinv_access_strong E N γ p P : + Lemma cinv_acc_strong E N γ p P : ↑N ⊆ E → cinv N γ P -∗ (cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (∀ E' : coPset, ▷ P ∨ cinv_own γ 1 ={E',↑N ∪ E'}=∗ True)). Proof. iIntros (?) "Hinv Hown". - iPoseProof (inv_access (↑ N) N with "Hinv") as "H"; first done. + iPoseProof (inv_acc (↑ N) N with "Hinv") as "H"; first done. rewrite difference_diag_L. iPoseProof (fupd_mask_frame_r _ _ (E ∖ ↑ N) with "H") as "H"; first set_solver. rewrite left_id_L -union_difference_L //. iMod "H" as "[[$ | >Hown'] H]". @@ -126,12 +126,12 @@ Section proofs. - iDestruct (cinv_own_1_l with "Hown' Hown") as %[]. Qed. - Lemma cinv_access E N γ p P : + Lemma cinv_acc E N γ p P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (▷ P ={E∖↑N,E}=∗ True). Proof. iIntros (?) "#Hinv Hγ". - iMod (cinv_access_strong with "Hinv Hγ") as "($ & $ & H)"; first done. + iMod (cinv_acc_strong with "Hinv Hγ") as "($ & $ & H)"; first done. iIntros "!> HP". rewrite {2}(union_difference_L (↑N) E)=> //. iApply "H". by iLeft. @@ -141,7 +141,7 @@ Section proofs. Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P. Proof. iIntros (?) "#Hinv Hγ". - iMod (cinv_access_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done. + iMod (cinv_acc_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done. rewrite {2}(union_difference_L (↑N) E)=> //. iApply "H". by iRight. Qed. @@ -155,7 +155,7 @@ Section proofs. Proof. rewrite /IntoAcc /accessor. iIntros (?) "#Hinv Hown". rewrite exist_unit -assoc. - iApply (cinv_access with "Hinv"); done. + iApply (cinv_acc with "Hinv"); done. Qed. End proofs. diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v index 0a5cf4aca..337e27bfd 100644 --- a/theories/base_logic/lib/invariants.v +++ b/theories/base_logic/lib/invariants.v @@ -27,7 +27,7 @@ Section inv. Definition own_inv (N : namespace) (P : iProp Σ) : iProp Σ := (∃ i, ⌜i ∈ (↑N:coPset)⌠∧ ownI i P)%I. - Lemma own_inv_access E N P : + Lemma own_inv_acc E N P : ↑N ⊆ E → own_inv N P ={E,E∖↑N}=∗ ▷ P ∗ (▷ P ={E∖↑N,E}=∗ True). Proof. rewrite uPred_fupd_eq /uPred_fupd_def. iDestruct 1 as (i) "[Hi #HiP]". @@ -81,7 +81,7 @@ Section inv. Lemma own_inv_to_inv M P: own_inv M P -∗ inv M P. Proof. iIntros "#I". rewrite inv_eq. iIntros (E H). - iPoseProof (own_inv_access with "I") as "H"; eauto. + iPoseProof (own_inv_acc with "I") as "H"; eauto. Qed. (** ** Public API of invariants *) @@ -97,7 +97,7 @@ Section inv. Global Instance inv_persistent N P : Persistent (inv N P). Proof. rewrite inv_eq. apply _. Qed. - Lemma inv_acc N P Q: + Lemma inv_alter N P Q: inv N P -∗ ▷ □ (P -∗ Q ∗ (Q -∗ P)) -∗ inv N Q. Proof. rewrite inv_eq. iIntros "#HI #Acc !>" (E H). @@ -108,7 +108,7 @@ Section inv. Lemma inv_iff N P Q : ▷ □ (P ↔ Q) -∗ inv N P -∗ inv N Q. Proof. - iIntros "#HPQ #HI". iApply (inv_acc with "HI"). + iIntros "#HPQ #HI". iApply (inv_alter with "HI"). iIntros "!> !# HP". iSplitL "HP". - by iApply "HPQ". - iIntros "HQ". by iApply "HPQ". @@ -127,7 +127,7 @@ Section inv. iApply own_inv_to_inv. done. Qed. - Lemma inv_access E N P : + Lemma inv_acc E N P : ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ ▷ P ∗ (▷ P ={E∖↑N,E}=∗ True). Proof. rewrite inv_eq /inv_def; iIntros (?) "#HI". by iApply "HI". @@ -146,11 +146,11 @@ Section inv. Qed. (** ** Derived properties *) - Lemma inv_access_strong E N P : + Lemma inv_acc_strong E N P : ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ ▷ P ∗ ∀ E', ▷ P ={E',↑N ∪ E'}=∗ True. Proof. iIntros (?) "Hinv". - iPoseProof (inv_access (↑ N) N with "Hinv") as "H"; first done. + iPoseProof (inv_acc (↑ N) N with "Hinv") as "H"; first done. rewrite difference_diag_L. iPoseProof (fupd_mask_frame_r _ _ (E ∖ ↑ N) with "H") as "H"; first set_solver. rewrite left_id_L -union_difference_L //. iMod "H" as "[$ H]"; iModIntro. @@ -159,16 +159,16 @@ Section inv. by rewrite left_id_L. Qed. - Lemma inv_access_timeless E N P `{!Timeless P} : + Lemma inv_acc_timeless E N P `{!Timeless P} : ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ P ∗ (P ={E∖↑N,E}=∗ True). Proof. - iIntros (?) "Hinv". iMod (inv_access with "Hinv") as "[>HP Hclose]"; auto. + iIntros (?) "Hinv". iMod (inv_acc with "Hinv") as "[>HP Hclose]"; auto. iIntros "!> {$HP} HP". iApply "Hclose"; auto. Qed. Lemma inv_sep_l N P Q : inv N (P ∗ Q) -∗ inv N P. Proof. - iIntros "#HI". iApply inv_acc; eauto. + iIntros "#HI". iApply inv_alter; eauto. iIntros "!> !# [$ $] $". Qed. diff --git a/theories/base_logic/lib/na_invariants.v b/theories/base_logic/lib/na_invariants.v index f291a9d10..40b9d0671 100644 --- a/theories/base_logic/lib/na_invariants.v +++ b/theories/base_logic/lib/na_invariants.v @@ -91,7 +91,7 @@ Section proofs. iNext. iLeft. by iFrame. Qed. - Lemma na_inv_access p E F N P : + Lemma na_inv_acc p E F N P : ↑N ⊆ E → ↑N ⊆ F → na_inv p N P -∗ na_own p F ={E}=∗ ▷ P ∗ na_own p (F∖↑N) ∗ (▷ P ∗ na_own p (F∖↑N) ={E}=∗ na_own p F). @@ -121,6 +121,6 @@ Section proofs. Proof. rewrite /IntoAcc /accessor. iIntros ((?&?)) "#Hinv Hown". rewrite exist_unit -assoc /=. - iApply (na_inv_access with "Hinv"); done. + iApply (na_inv_acc with "Hinv"); done. Qed. End proofs. diff --git a/theories/base_logic/lib/sts.v b/theories/base_logic/lib/sts.v index 24964273b..6b6b748e4 100644 --- a/theories/base_logic/lib/sts.v +++ b/theories/base_logic/lib/sts.v @@ -150,7 +150,7 @@ Section sts. ⌜sts.steps (s, T) (s', T')⌠∗ ▷ φ s' ={E}=∗ ▷ sts_inv γ φ ∗ sts_own γ s' T'. Proof. by apply sts_inv_accS. Qed. - Lemma sts_accessS φ E N γ S T : + Lemma sts_accS φ E N γ S T : ↑N ⊆ E → sts_ctx γ N φ ∗ sts_ownS γ S T ={E,E∖↑N}=∗ ∃ s, ⌜s ∈ S⌠∗ ▷ φ s ∗ ∀ s' T', @@ -158,7 +158,7 @@ Section sts. Proof. iIntros (?) "[#? Hγf]". rewrite /sts_ctx. iInv N as "Hinv" "Hclose". (* The following is essentially a very trivial composition of the accessors - [sts_inv_acc] and [inv_access] -- but since we don't have any good support + [sts_inv_acc] and [inv_acc] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having to unpack and repack various proofs. TODO: Make this mostly automatic, by supporting "opening accessors @@ -168,12 +168,12 @@ Section sts. iMod ("HclSts" $! s' T' with "H") as "(Hinv & ?)". by iMod ("Hclose" with "Hinv"). Qed. - Lemma sts_access φ E N γ s0 T : + Lemma sts_acc φ E N γ s0 T : ↑N ⊆ E → sts_ctx γ N φ ∗ sts_own γ s0 T ={E,E∖↑N}=∗ ∃ s, ⌜sts.frame_steps T s0 s⌠∗ ▷ φ s ∗ ∀ s' T', ⌜sts.steps (s, T) (s', T')⌠∗ ▷ φ s' ={E∖↑N,E}=∗ sts_own γ s' T'. - Proof. by apply sts_accessS. Qed. + Proof. by apply sts_accS. Qed. End sts. Typeclasses Opaque sts_own sts_ownS sts_inv sts_ctx. diff --git a/theories/bi/lib/counterexamples.v b/theories/bi/lib/counterexamples.v index d268871d0..594799bf0 100644 --- a/theories/bi/lib/counterexamples.v +++ b/theories/bi/lib/counterexamples.v @@ -308,7 +308,7 @@ Module linear2. Section linear2. Context (gname : Type) (cinv : gname → PROP → PROP) (cinv_own : gname → PROP). Hypothesis cinv_alloc : ∀ E, fupd E E (∃ γ, ∀ P, ▷ P -∗ fupd E E (cinv γ P ∗ cinv_own γ))%I. - Hypothesis cinv_access : ∀ P γ, + Hypothesis cinv_acc : ∀ P γ, cinv γ P -∗ cinv_own γ -∗ fupd M1 M0 (▷ P ∗ cinv_own γ ∗ (▷ P -∗ fupd M0 M1 emp)). (** Some general lemmas and proof mode compatibility. *) @@ -335,7 +335,7 @@ Module linear2. Section linear2. iIntros "HP". iMod cinv_alloc as (γ) "Hmkinv". iMod ("Hmkinv" $! True%I with "[//]") as "[Hinv Htok]". - iMod (cinv_access with "Hinv Htok") as "(Htrue & Htok & Hclose)". + iMod (cinv_acc with "Hinv Htok") as "(Htrue & Htok & Hclose)". iApply "Hclose". done. Qed. End linear2. End linear2. -- GitLab