From a8fe7b7fe0797894d2a5e6f29838a43afb710aa2 Mon Sep 17 00:00:00 2001
From: Ralf Jung <jung@mpi-sws.org>
Date: Tue, 11 Feb 2020 09:32:12 +0100
Subject: [PATCH] rename _access -> _acc

---
 tests/ipm_paper.v                             |  2 +-
 theories/base_logic/lib/auth.v                |  6 +++---
 .../base_logic/lib/cancelable_invariants.v    | 12 +++++------
 theories/base_logic/lib/invariants.v          | 20 +++++++++----------
 theories/base_logic/lib/na_invariants.v       |  4 ++--
 theories/base_logic/lib/sts.v                 |  8 ++++----
 theories/bi/lib/counterexamples.v             |  4 ++--
 7 files changed, 28 insertions(+), 28 deletions(-)

diff --git a/tests/ipm_paper.v b/tests/ipm_paper.v
index 19a59fa93..5dad15580 100644
--- a/tests/ipm_paper.v
+++ b/tests/ipm_paper.v
@@ -112,7 +112,7 @@ Lemma wp_inv_open `{!irisG Λ Σ} N E P e Φ :
   inv N P ∗ (▷ P -∗ WP e @ E ∖ ↑N {{ v, ▷ P ∗ Φ v }}) ⊢ WP e @ E {{ Φ }}.
 Proof.
   iIntros (??) "[#Hinv Hwp]".
-  iMod (inv_access E N P with "Hinv") as "[HP Hclose]"=>//.
+  iMod (inv_acc E N P with "Hinv") as "[HP Hclose]"=>//.
   iApply wp_wand_r; iSplitL "HP Hwp"; [by iApply "Hwp"|].
   iIntros (v) "[HP $]". by iApply "Hclose".
 Qed.
diff --git a/theories/base_logic/lib/auth.v b/theories/base_logic/lib/auth.v
index 6bb76bced..9e14b4cb3 100644
--- a/theories/base_logic/lib/auth.v
+++ b/theories/base_logic/lib/auth.v
@@ -147,7 +147,7 @@ Section auth.
     iModIntro. iFrame. iExists u. iFrame.
   Qed.
 
-  Lemma auth_access E N γ a :
+  Lemma auth_acc E N γ a :
     ↑N ⊆ E →
     auth_ctx γ N f φ ∗ auth_own γ a ={E,E∖↑N}=∗ ∃ t,
       ⌜a ≼ f t⌝ ∗ ▷ φ t ∗ ∀ u b,
@@ -155,7 +155,7 @@ Section auth.
   Proof using Type*.
     iIntros (?) "[#? Hγf]". rewrite /auth_ctx. iInv N as "Hinv" "Hclose".
     (* The following is essentially a very trivial composition of the accessors
-       [auth_inv_acc] and [inv_access] -- but since we don't have any good support
+       [auth_inv_acc] and [inv_acc] -- but since we don't have any good support
        for that currently, this gets more tedious than it should, with us having
        to unpack and repack various proofs.
        TODO: Make this mostly automatic, by supporting "opening accessors
@@ -166,4 +166,4 @@ Section auth.
   Qed.
 End auth.
 
-Arguments auth_access {_ _ _} [_] {_} [_] _ _ _ _ _ _ _.
+Arguments auth_acc {_ _ _} [_] {_} [_] _ _ _ _ _ _ _.
diff --git a/theories/base_logic/lib/cancelable_invariants.v b/theories/base_logic/lib/cancelable_invariants.v
index 03716dd2a..38f1a16b7 100644
--- a/theories/base_logic/lib/cancelable_invariants.v
+++ b/theories/base_logic/lib/cancelable_invariants.v
@@ -109,13 +109,13 @@ Section proofs.
   Qed.
 
   (*** Accessors *)
-  Lemma cinv_access_strong E N γ p P :
+  Lemma cinv_acc_strong E N γ p P :
     ↑N ⊆ E →
     cinv N γ P -∗ (cinv_own γ p ={E,E∖↑N}=∗
     ▷ P ∗ cinv_own γ p ∗ (∀ E' : coPset, ▷ P ∨ cinv_own γ 1 ={E',↑N ∪ E'}=∗ True)).
   Proof.
     iIntros (?) "Hinv Hown".
-    iPoseProof (inv_access (↑ N) N with "Hinv") as "H"; first done.
+    iPoseProof (inv_acc (↑ N) N with "Hinv") as "H"; first done.
     rewrite difference_diag_L.
     iPoseProof (fupd_mask_frame_r _ _ (E ∖ ↑ N) with "H") as "H"; first set_solver.
     rewrite left_id_L -union_difference_L //. iMod "H" as "[[$ | >Hown'] H]".
@@ -126,12 +126,12 @@ Section proofs.
     - iDestruct (cinv_own_1_l with "Hown' Hown") as %[].
   Qed.
 
-  Lemma cinv_access E N γ p P :
+  Lemma cinv_acc E N γ p P :
     ↑N ⊆ E →
     cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (▷ P ={E∖↑N,E}=∗ True).
   Proof.
     iIntros (?) "#Hinv Hγ".
-    iMod (cinv_access_strong with "Hinv Hγ") as "($ & $ & H)"; first done.
+    iMod (cinv_acc_strong with "Hinv Hγ") as "($ & $ & H)"; first done.
     iIntros "!> HP".
     rewrite {2}(union_difference_L (↑N) E)=> //.
     iApply "H". by iLeft.
@@ -141,7 +141,7 @@ Section proofs.
   Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P.
   Proof.
     iIntros (?) "#Hinv Hγ".
-    iMod (cinv_access_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done.
+    iMod (cinv_acc_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done.
     rewrite {2}(union_difference_L (↑N) E)=> //.
     iApply "H". by iRight.
   Qed.
@@ -155,7 +155,7 @@ Section proofs.
   Proof.
     rewrite /IntoAcc /accessor. iIntros (?) "#Hinv Hown".
     rewrite exist_unit -assoc.
-    iApply (cinv_access with "Hinv"); done.
+    iApply (cinv_acc with "Hinv"); done.
   Qed.
 End proofs.
 
diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v
index 0a5cf4aca..337e27bfd 100644
--- a/theories/base_logic/lib/invariants.v
+++ b/theories/base_logic/lib/invariants.v
@@ -27,7 +27,7 @@ Section inv.
   Definition own_inv (N : namespace) (P : iProp Σ) : iProp Σ :=
     (∃ i, ⌜i ∈ (↑N:coPset)⌝ ∧ ownI i P)%I.
 
-  Lemma own_inv_access E N P :
+  Lemma own_inv_acc E N P :
     ↑N ⊆ E → own_inv N P ={E,E∖↑N}=∗ ▷ P ∗ (▷ P ={E∖↑N,E}=∗ True).
   Proof.
     rewrite uPred_fupd_eq /uPred_fupd_def. iDestruct 1 as (i) "[Hi #HiP]".
@@ -81,7 +81,7 @@ Section inv.
   Lemma own_inv_to_inv M P: own_inv M P  -∗ inv M P.
   Proof.
     iIntros "#I". rewrite inv_eq. iIntros (E H).
-    iPoseProof (own_inv_access with "I") as "H"; eauto.
+    iPoseProof (own_inv_acc with "I") as "H"; eauto.
   Qed.
 
   (** ** Public API of invariants *)
@@ -97,7 +97,7 @@ Section inv.
   Global Instance inv_persistent N P : Persistent (inv N P).
   Proof. rewrite inv_eq. apply _. Qed.
 
-  Lemma inv_acc N P Q:
+  Lemma inv_alter N P Q:
     inv N P -∗ ▷ □ (P -∗ Q ∗ (Q -∗ P)) -∗ inv N Q.
   Proof.
     rewrite inv_eq. iIntros "#HI #Acc !>" (E H).
@@ -108,7 +108,7 @@ Section inv.
 
   Lemma inv_iff N P Q : ▷ □ (P ↔ Q) -∗ inv N P -∗ inv N Q.
   Proof.
-    iIntros "#HPQ #HI". iApply (inv_acc with "HI").
+    iIntros "#HPQ #HI". iApply (inv_alter with "HI").
     iIntros "!> !# HP". iSplitL "HP".
     - by iApply "HPQ".
     - iIntros "HQ". by iApply "HPQ".
@@ -127,7 +127,7 @@ Section inv.
     iApply own_inv_to_inv. done.
   Qed.
 
-  Lemma inv_access E N P :
+  Lemma inv_acc E N P :
     ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ ▷ P ∗ (▷ P ={E∖↑N,E}=∗ True).
   Proof.
     rewrite inv_eq /inv_def; iIntros (?) "#HI". by iApply "HI".
@@ -146,11 +146,11 @@ Section inv.
   Qed.
 
   (** ** Derived properties *)
-  Lemma inv_access_strong E N P :
+  Lemma inv_acc_strong E N P :
     ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ ▷ P ∗ ∀ E', ▷ P ={E',↑N ∪ E'}=∗ True.
   Proof.
     iIntros (?) "Hinv".
-    iPoseProof (inv_access (↑ N) N with "Hinv") as "H"; first done.
+    iPoseProof (inv_acc (↑ N) N with "Hinv") as "H"; first done.
     rewrite difference_diag_L.
     iPoseProof (fupd_mask_frame_r _ _ (E ∖ ↑ N) with "H") as "H"; first set_solver.
     rewrite left_id_L -union_difference_L //. iMod "H" as "[$ H]"; iModIntro.
@@ -159,16 +159,16 @@ Section inv.
     by rewrite left_id_L.
   Qed.
 
-  Lemma inv_access_timeless E N P `{!Timeless P} :
+  Lemma inv_acc_timeless E N P `{!Timeless P} :
     ↑N ⊆ E → inv N P ={E,E∖↑N}=∗ P ∗ (P ={E∖↑N,E}=∗ True).
   Proof.
-    iIntros (?) "Hinv". iMod (inv_access with "Hinv") as "[>HP Hclose]"; auto.
+    iIntros (?) "Hinv". iMod (inv_acc with "Hinv") as "[>HP Hclose]"; auto.
     iIntros "!> {$HP} HP". iApply "Hclose"; auto.
   Qed.
 
   Lemma inv_sep_l N P Q : inv N (P ∗ Q) -∗ inv N P.
   Proof.
-    iIntros "#HI". iApply inv_acc; eauto.
+    iIntros "#HI". iApply inv_alter; eauto.
     iIntros "!> !# [$ $] $".
   Qed.
 
diff --git a/theories/base_logic/lib/na_invariants.v b/theories/base_logic/lib/na_invariants.v
index f291a9d10..40b9d0671 100644
--- a/theories/base_logic/lib/na_invariants.v
+++ b/theories/base_logic/lib/na_invariants.v
@@ -91,7 +91,7 @@ Section proofs.
     iNext. iLeft. by iFrame.
   Qed.
 
-  Lemma na_inv_access p E F N P :
+  Lemma na_inv_acc p E F N P :
     ↑N ⊆ E → ↑N ⊆ F →
     na_inv p N P -∗ na_own p F ={E}=∗ ▷ P ∗ na_own p (F∖↑N) ∗
                        (▷ P ∗ na_own p (F∖↑N) ={E}=∗ na_own p F).
@@ -121,6 +121,6 @@ Section proofs.
   Proof.
     rewrite /IntoAcc /accessor. iIntros ((?&?)) "#Hinv Hown".
     rewrite exist_unit -assoc /=.
-    iApply (na_inv_access with "Hinv"); done.
+    iApply (na_inv_acc with "Hinv"); done.
   Qed.
 End proofs.
diff --git a/theories/base_logic/lib/sts.v b/theories/base_logic/lib/sts.v
index 24964273b..6b6b748e4 100644
--- a/theories/base_logic/lib/sts.v
+++ b/theories/base_logic/lib/sts.v
@@ -150,7 +150,7 @@ Section sts.
       ⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E}=∗ ▷ sts_inv γ φ ∗ sts_own γ s' T'.
   Proof. by apply sts_inv_accS. Qed.
 
-  Lemma sts_accessS φ E N γ S T :
+  Lemma sts_accS φ E N γ S T :
     ↑N ⊆ E →
     sts_ctx γ N φ ∗ sts_ownS γ S T ={E,E∖↑N}=∗ ∃ s,
       ⌜s ∈ S⌝ ∗ ▷ φ s ∗ ∀ s' T',
@@ -158,7 +158,7 @@ Section sts.
   Proof.
     iIntros (?) "[#? Hγf]". rewrite /sts_ctx. iInv N as "Hinv" "Hclose".
     (* The following is essentially a very trivial composition of the accessors
-       [sts_inv_acc] and [inv_access] -- but since we don't have any good support
+       [sts_inv_acc] and [inv_acc] -- but since we don't have any good support
        for that currently, this gets more tedious than it should, with us having
        to unpack and repack various proofs.
        TODO: Make this mostly automatic, by supporting "opening accessors
@@ -168,12 +168,12 @@ Section sts.
     iMod ("HclSts" $! s' T' with "H") as "(Hinv & ?)". by iMod ("Hclose" with "Hinv").
   Qed.
 
-  Lemma sts_access φ E N γ s0 T :
+  Lemma sts_acc φ E N γ s0 T :
     ↑N ⊆ E →
     sts_ctx γ N φ ∗ sts_own γ s0 T ={E,E∖↑N}=∗ ∃ s,
       ⌜sts.frame_steps T s0 s⌝ ∗ ▷ φ s ∗ ∀ s' T',
       ⌜sts.steps (s, T) (s', T')⌝ ∗ ▷ φ s' ={E∖↑N,E}=∗ sts_own γ s' T'.
-  Proof. by apply sts_accessS. Qed.
+  Proof. by apply sts_accS. Qed.
 End sts.
 
 Typeclasses Opaque sts_own sts_ownS sts_inv sts_ctx.
diff --git a/theories/bi/lib/counterexamples.v b/theories/bi/lib/counterexamples.v
index d268871d0..594799bf0 100644
--- a/theories/bi/lib/counterexamples.v
+++ b/theories/bi/lib/counterexamples.v
@@ -308,7 +308,7 @@ Module linear2. Section linear2.
   Context (gname : Type) (cinv : gname → PROP → PROP) (cinv_own : gname → PROP).
   Hypothesis cinv_alloc : ∀ E,
     fupd E E (∃ γ, ∀ P, ▷ P -∗ fupd E E (cinv γ P ∗ cinv_own γ))%I.
-  Hypothesis cinv_access : ∀ P γ,
+  Hypothesis cinv_acc : ∀ P γ,
     cinv γ P -∗ cinv_own γ -∗ fupd M1 M0 (▷ P ∗ cinv_own γ ∗ (▷ P -∗ fupd M0 M1 emp)).
 
   (** Some general lemmas and proof mode compatibility. *)
@@ -335,7 +335,7 @@ Module linear2. Section linear2.
     iIntros "HP".
     iMod cinv_alloc as (γ) "Hmkinv".
     iMod ("Hmkinv" $! True%I with "[//]") as "[Hinv Htok]".
-    iMod (cinv_access with "Hinv Htok") as "(Htrue & Htok & Hclose)".
+    iMod (cinv_acc with "Hinv Htok") as "(Htrue & Htok & Hclose)".
     iApply "Hclose". done.
   Qed.
 End linear2. End linear2.
-- 
GitLab