diff --git a/tests/proofmode_ascii.v b/tests/proofmode_ascii.v index 1c55fd9385cf8ca0687807110b939683d991e232..f279d738203bbb8f66ba10488d1fa35259e5b3d4 100644 --- a/tests/proofmode_ascii.v +++ b/tests/proofmode_ascii.v @@ -12,9 +12,9 @@ Section base_logic_tests. |-- forall (x y : nat) a b, x ≡ y -> <#> (uPred_ownM (a ⋅ b) -* - (exists y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ <#> uPred_ownM c) -* + (exists y1 y2 c, P1 ((x + y1) + y2) /\ True /\ <#> uPred_ownM c) -* <#> |> (forall z, P2 z ∨ True -> P2 z) -* - |> (forall n m : nat, P1 n -> <#> (True ∧ P2 n -> <#> (⌜n = n⌠↔ P3 n))) -* + |> (forall n m : nat, P1 n -> <#> (True /\ P2 n -> <#> (⌜n = n⌠<-> P3 n))) -* |> ⌜x = 0⌠\/ exists x z, |> P3 (x + z) ** uPred_ownM b ** uPred_ownM (core b)). Proof. iIntros (i [|j] a b ?) "!> [Ha Hb] H1 #H2 H3"; setoid_subst. @@ -34,7 +34,7 @@ Section base_logic_tests. Qed. Lemma test_iFrame_pure (x y z : M) : - ✓ x -> ⌜y ≡ z⌠|--@{uPredI M} ✓ x ∧ ✓ x ∧ y ≡ z. + ✓ x -> ⌜y ≡ z⌠|--@{uPredI M} ✓ x /\ ✓ x /\ y ≡ z. Proof. iIntros (Hv) "Hxy". by iFrame (Hv) "Hxy". Qed. Lemma test_iAssert_modality P : (|==> False) -* |==> P. @@ -159,8 +159,8 @@ Section iris_tests. (* test robustness in presence of other invariants *) Lemma test_iInv_7 t N1 N2 N3 E1 E2 P: ↑N3 ⊆ E1 -> - inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 - ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. + inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 + ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. Proof. iIntros (?) "(#?&#?&#?&Hown1&Hown2)". iInv N3 with "Hown1" as "(#HP&Hown1)". @@ -168,7 +168,7 @@ Section iris_tests. Qed. (* iInv should work even where we have "inv N P" in which P contains an evar *) - Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=* P ≡ True ∧ inv N P. + Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=* P ≡ True /\ inv N P. Proof. eexists. iIntros "#H". iInv N as "HP". iFrame "HP". auto. @@ -177,8 +177,8 @@ Section iris_tests. (* test selection by hypothesis name instead of namespace *) Lemma test_iInv_9 t N1 N2 N3 E1 E2 P: ↑N3 ⊆ E1 -> - inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 - ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. + inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 + ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. Proof. iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)". iInv "HInv" with "Hown1" as "(#HP&Hown1)". @@ -188,8 +188,8 @@ Section iris_tests. (* test selection by hypothesis name instead of namespace *) Lemma test_iInv_10 t N1 N2 N3 E1 E2 P: ↑N3 ⊆ E1 -> - inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 - ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. + inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2 + ={⊤}=* na_own t E1 ** na_own t E2 ** |> P. Proof. iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)". iInv "HInv" as "(#HP&Hown1)".