diff --git a/theories/bi/lib/counterexamples.v b/theories/bi/lib/counterexamples.v index a9eaff530f4ab8081b0f02094ee3cba649c9a1e3..f1715632709a98aeb7d51e5369565efba3ed3108 100644 --- a/theories/bi/lib/counterexamples.v +++ b/theories/bi/lib/counterexamples.v @@ -5,6 +5,40 @@ From iris Require Import options. (* The sections add extra BI assumptions, which is only picked up with "Type"*. *) Set Default Proof Using "Type*". +(** This proves that the combination of affinity [P ∗ Q ⊢ P] and the classical +excluded-middle [P ∨ ¬P] axiom makes the separation conjunction trivial, i.e., +it gives [P -∗ P ∗ P]. *) +Module affine_em. Section affine_em. + Context `{!BiAffine PROP}. + Context (em : ∀ P : PROP, ⊢ P ∨ ¬P). + Implicit Types P Q : PROP. + + Lemma and_sep P Q : P ∧ Q -∗ P ∗ Q. + Proof using All. + iIntros "HPQ". iDestruct (em P) as "[HP|HnotP]". + - iFrame "HP". by iDestruct "HPQ" as "[_ HQ]". + - iExFalso. iApply "HnotP". by iDestruct "HPQ" as "[HP _]". + Qed. + Lemma sep_trivial P : P -∗ P ∗ P. + Proof using All. iIntros "HP". iApply and_sep; auto. Qed. +End affine_em. End affine_em. + +(** This proves that the combination of Löb induction [(▷ P → P) ⊢ P] and the +classical excluded-middle [P ∨ ¬P] axiom makes the later operator trivial, i.e., +it gives [▷ False]. *) +Module löb_em. Section löb_em. + Context `{!BiLöb PROP}. + Context (em : ∀ P : PROP, ⊢ P ∨ ¬P). + Implicit Types P : PROP. + + Lemma later_False : ⊢@{PROP} ▷ False. + Proof. + iDestruct (em (▷ False)%I) as "#[HP|HnotP]". + - done. + - iExFalso. iLöb as "IH". iSpecialize ("HnotP" with "IH"). done. + Qed. +End löb_em. End löb_em. + (** This proves that we need the ▷ in a "Saved Proposition" construction with name-dependent allocation. *) Module savedprop. Section savedprop.