From 920bc3d97b8830139045e1780f2aff4d05b910cd Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Wed, 18 Nov 2020 15:07:21 +0100 Subject: [PATCH] avoid using some auto-generated names --- iris/algebra/lib/gmap_view.v | 2 +- iris/base_logic/lib/own.v | 6 +++--- iris_heap_lang/lang.v | 6 +++--- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/iris/algebra/lib/gmap_view.v b/iris/algebra/lib/gmap_view.v index 4c30f0144..9ea8adff1 100644 --- a/iris/algebra/lib/gmap_view.v +++ b/iris/algebra/lib/gmap_view.v @@ -283,7 +283,7 @@ Section lemmas. - split; first done. split. + apply (Hm 0%nat). + apply equiv_dist=>n. apply Hm. - - split; first done. split. + - split; first done. intros n. split. + apply Hm. + revert n. apply equiv_dist. apply Hm. Qed. diff --git a/iris/base_logic/lib/own.v b/iris/base_logic/lib/own.v index e95e32e79..5e9faf31e 100644 --- a/iris/base_logic/lib/own.v +++ b/iris/base_logic/lib/own.v @@ -248,12 +248,12 @@ Qed. Lemma own_alloc_strong a (P : gname → Prop) : pred_infinite P → ✓ a → ⊢ |==> ∃ γ, ⌜P γ⌠∗ own γ a. -Proof. intros HP Ha. eapply own_alloc_strong_dep with (f := λ _, a); eauto. Qed. +Proof. intros HP Ha. eapply (own_alloc_strong_dep (λ _, a)); eauto. Qed. Lemma own_alloc_cofinite a (G : gset gname) : ✓ a → ⊢ |==> ∃ γ, ⌜γ ∉ G⌠∗ own γ a. -Proof. intros Ha. eapply own_alloc_cofinite_dep with (f := λ _, a); eauto. Qed. +Proof. intros Ha. eapply (own_alloc_cofinite_dep (λ _, a)); eauto. Qed. Lemma own_alloc a : ✓ a → ⊢ |==> ∃ γ, own γ a. -Proof. intros Ha. eapply own_alloc_dep with (f := λ _, a); eauto. Qed. +Proof. intros Ha. eapply (own_alloc_dep (λ _, a)); eauto. Qed. (** ** Frame preserving updates *) Lemma own_updateP P γ a : a ~~>: P → own γ a ==∗ ∃ a', ⌜P a'⌠∗ own γ a'. diff --git a/iris_heap_lang/lang.v b/iris_heap_lang/lang.v index 226b4e183..1b154fa31 100644 --- a/iris_heap_lang/lang.v +++ b/iris_heap_lang/lang.v @@ -787,7 +787,7 @@ Proof. destruct 1; inversion 1; naive_solver. Qed. Lemma irreducible_resolve e v1 v2 σ : irreducible e σ → irreducible (Resolve e (Val v1) (Val v2)) σ. Proof. - intros H κs ** [Ks e1' e2' Hfill -> step]. simpl in *. + intros H κs ? σ' efs [Ks e1' e2' Hfill -> step]. simpl in *. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill. - subst e1'. inversion step. eapply H. by apply head_prim_step. - rewrite fill_app /= in Hfill. @@ -796,6 +796,6 @@ Proof. (assert (to_val (fill Ks e) = Some v) as HEq by rewrite -H //); apply to_val_fill_some in HEq; destruct HEq as [-> ->]; inversion step end). - apply (H κs (fill_item K (foldl (flip fill_item) e2' Ks)) σ' efs). - econstructor 1 with (K := Ks ++ [K]); last done; simpl; by rewrite fill_app. + eapply (H κs (fill_item _ (foldl (flip fill_item) e2' Ks)) σ' efs). + eapply (Ectx_step _ _ _ _ _ _ (Ks ++ [_])); last done; simpl; by rewrite fill_app. Qed. -- GitLab