diff --git a/theories/proofmode/class_instances_bi.v b/theories/proofmode/class_instances_bi.v index 51eba5b2b2ebd09525d07f07bf4af0679ff54f45..30f3d187957a5ffd587f672309bac73a26edaf91 100644 --- a/theories/proofmode/class_instances_bi.v +++ b/theories/proofmode/class_instances_bi.v @@ -45,6 +45,12 @@ Proof. - apply bi.forall_intro=>?. apply H1, H2. - intros x. apply H1. revert H2. by rewrite (bi.forall_elim x). Qed. +Global Instance as_emp_valid_tforall {TT : tele} (φ : TT → Prop) (P : TT → PROP) : + (∀ x, AsEmpValid (φ x) (P x)) → AsEmpValid (∀.. x, φ x) (∀.. x, P x). +Proof. + rewrite /AsEmpValid !tforall_forall bi_tforall_forall. + apply as_emp_valid_forall. +Qed. (* We add a useless hypothesis [BiEmbed PROP PROP'] in order to make sure this instance is not used when there is no embedding between @@ -142,6 +148,12 @@ Proof. rewrite /KnownLFromAssumption /FromAssumption=> <-. by rewrite forall_elim. Qed. +Global Instance from_assumption_tforall {TT : tele} p (Φ : TT → PROP) Q x : + FromAssumption p (Φ x) Q → KnownLFromAssumption p (∀.. x, Φ x) Q. +Proof. + rewrite /KnownLFromAssumption /FromAssumption=> <-. + by rewrite bi_tforall_forall forall_elim. +Qed. Global Instance from_assumption_bupd `{BiBUpd PROP} p P Q : FromAssumption p P Q → KnownRFromAssumption p P (|==> Q). @@ -164,9 +176,17 @@ Proof. rewrite /FromPure /IntoPure pure_impl=> <- -> //. Qed. Global Instance into_pure_exist {A} (Φ : A → PROP) (φ : A → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃ x, Φ x) (∃ x, φ x). Proof. rewrite /IntoPure=>Hx. rewrite pure_exist. by setoid_rewrite Hx. Qed. +Global Instance into_pure_texist {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) : + (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃.. x, Φ x) (∃.. x, φ x). +Proof. rewrite /IntoPure texist_exist bi_texist_exist. apply into_pure_exist. Qed. Global Instance into_pure_forall {A} (Φ : A → PROP) (φ : A → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀ x, Φ x) (∀ x, φ x). Proof. rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx. Qed. +Global Instance into_pure_tforall {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) : + (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀.. x, Φ x) (∀.. x, φ x). +Proof. + rewrite /IntoPure !tforall_forall bi_tforall_forall. apply into_pure_forall. +Qed. Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 : IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∗ P2) (φ1 ∧ φ2). @@ -225,12 +245,20 @@ Proof. rewrite /FromPure=>Hx. rewrite pure_exist affinely_if_exist. by setoid_rewrite Hx. Qed. +Global Instance from_pure_texist {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) : + (∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∃.. x, Φ x) (∃.. x, φ x). +Proof. rewrite /FromPure texist_exist bi_texist_exist. apply from_pure_exist. Qed. Global Instance from_pure_forall {A} a (Φ : A → PROP) (φ : A → Prop) : (∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀ x, Φ x) (∀ x, φ x). Proof. rewrite /FromPure=>Hx. rewrite pure_forall. setoid_rewrite <-Hx. destruct a=>//=. apply affinely_forall. Qed. +Global Instance from_pure_tforall {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) : + (∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀.. x, Φ x) (∀.. x, φ x). +Proof. + rewrite /FromPure !tforall_forall bi_tforall_forall. apply from_pure_forall. +Qed. Global Instance from_pure_pure_sep_true a1 a2 (φ1 φ2 : Prop) P1 P2 : FromPure a1 P1 φ1 → FromPure a2 P2 φ2 → @@ -1004,6 +1032,9 @@ Proof. by rewrite /FromForall bi_tforall_forall. Qed. Global Instance from_forall_pure {A} (φ : A → Prop) : @FromForall PROP A ⌜∀ a : A, φ a⌠(λ a, ⌜ φ a âŒ)%I. Proof. by rewrite /FromForall pure_forall. Qed. +Global Instance from_tforall_pure {TT : tele} (φ : TT → Prop) : + @FromForall PROP TT ⌜∀.. x : TT, φ x⌠(λ x, ⌜ φ x âŒ)%I. +Proof. by rewrite /FromForall tforall_forall pure_forall. Qed. Global Instance from_forall_pure_not (φ : Prop) : @FromForall PROP φ ⌜¬ φ⌠(λ a : φ, False)%I. Proof. by rewrite /FromForall pure_forall. Qed. @@ -1051,10 +1082,15 @@ Global Instance elim_modal_wandM φ p p' P P' Q Q' mR : ElimModal φ p p' P P' (mR -∗? Q) (mR -∗? Q'). Proof. rewrite /ElimModal !wandM_sound. exact: elim_modal_wand. Qed. Global Instance elim_modal_forall {A} φ p p' P P' (Φ Ψ : A → PROP) : - (∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) → ElimModal φ p p' P P' (∀ x, Φ x) (∀ x, Ψ x). + (∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) → + ElimModal φ p p' P P' (∀ x, Φ x) (∀ x, Ψ x). Proof. rewrite /ElimModal=> H ?. apply forall_intro=> a. rewrite (forall_elim a); auto. Qed. +Global Instance elim_modal_tforall {TT : tele} φ p p' P P' (Φ Ψ : TT → PROP) : + (∀ x, ElimModal φ p p' P P' (Φ x) (Ψ x)) → + ElimModal φ p p' P P' (∀.. x, Φ x) (∀.. x, Ψ x). +Proof. rewrite /ElimModal !bi_tforall_forall. apply elim_modal_forall. Qed. Global Instance elim_modal_absorbingly_here p P Q : Absorbing Q → ElimModal True p false (<absorb> P) P Q Q. Proof. @@ -1095,6 +1131,9 @@ Global Instance add_modal_forall {A} P P' (Φ : A → PROP) : Proof. rewrite /AddModal=> H. apply forall_intro=> a. by rewrite (forall_elim a). Qed. +Global Instance add_modal_tforall {TT : tele} P P' (Φ : TT → PROP) : + (∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀.. x, Φ x). +Proof. rewrite /AddModal bi_tforall_forall. apply add_modal_forall. Qed. Global Instance add_modal_embed_bupd_goal `{BiEmbedBUpd PROP PROP'} (P P' : PROP') (Q : PROP) : AddModal P P' (|==> ⎡Q⎤)%I → AddModal P P' ⎡|==> Q⎤. diff --git a/theories/proofmode/frame_instances.v b/theories/proofmode/frame_instances.v index 696da901b497773f5618aa74be9565209b537222..1399b4c6085475d6504cb97c4f57a0250359af1e 100644 --- a/theories/proofmode/frame_instances.v +++ b/theories/proofmode/frame_instances.v @@ -1,5 +1,5 @@ From stdpp Require Import nat_cancel. -From iris.bi Require Import bi tactics. +From iris.bi Require Import bi tactics telescopes. From iris.proofmode Require Import classes. Set Default Proof Using "Type". Import bi. @@ -265,9 +265,15 @@ Qed. Global Instance frame_exist {A} p R (Φ Ψ : A → PROP) : (∀ a, Frame p R (Φ a) (Ψ a)) → Frame p R (∃ x, Φ x) (∃ x, Ψ x). Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed. +Global Instance frame_texist {TT : tele} p R (Φ Ψ : TT → PROP) : + (∀ x, Frame p R (Φ x) (Ψ x)) → Frame p R (∃.. x, Φ x) (∃.. x, Ψ x). +Proof. rewrite /Frame !bi_texist_exist. apply frame_exist. Qed. Global Instance frame_forall {A} p R (Φ Ψ : A → PROP) : (∀ a, Frame p R (Φ a) (Ψ a)) → Frame p R (∀ x, Φ x) (∀ x, Ψ x). Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. +Global Instance frame_tforall {TT : tele} p R (Φ Ψ : TT → PROP) : + (∀ x, Frame p R (Φ x) (Ψ x)) → Frame p R (∀.. x, Φ x) (∀.. x, Ψ x). +Proof. rewrite /Frame !bi_tforall_forall. apply frame_forall. Qed. Global Instance frame_impl_persistent R P1 P2 Q2 : Frame true R P2 Q2 → Frame true R (P1 → P2) (P1 → Q2).