diff --git a/_CoqProject b/_CoqProject
index b8dc0d3f83c048a3f021884c4bc62bb73020af62..4820179c052dcaac62e15b72b0c19aec953040ed 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -57,6 +57,7 @@ theories/program_logic/adequacy.v
 theories/program_logic/lifting.v
 theories/program_logic/weakestpre.v
 theories/program_logic/total_weakestpre.v
+theories/program_logic/total_adequacy.v
 theories/program_logic/hoare.v
 theories/program_logic/language.v
 theories/program_logic/ectx_language.v
diff --git a/theories/program_logic/total_adequacy.v b/theories/program_logic/total_adequacy.v
new file mode 100644
index 0000000000000000000000000000000000000000..648d934571fd8d628932554a45737a2c2c2040ec
--- /dev/null
+++ b/theories/program_logic/total_adequacy.v
@@ -0,0 +1,129 @@
+From iris.program_logic Require Export total_weakestpre adequacy.
+From iris.algebra Require Import gmap auth agree gset coPset.
+From iris.base_logic Require Import big_op soundness fixpoint.
+From iris.base_logic.lib Require Import wsat.
+From iris.proofmode Require Import tactics.
+Set Default Proof Using "Type".
+Import uPred.
+
+Section adequacy.
+Context `{irisG Λ Σ}.
+Implicit Types e : expr Λ.
+
+Definition twptp_pre (twptp : list (expr Λ) → iProp Σ)
+    (t1 : list (expr Λ)) : iProp Σ :=
+  (∀ t2 σ1 σ2, ⌜step (t1,σ1) (t2,σ2)⌝ -∗
+    state_interp σ1 ={⊤}=∗ state_interp σ2 ∗ twptp t2)%I.
+
+Lemma twptp_pre_mono (twptp1 twptp2 : list (expr Λ) → iProp Σ) :
+  ((□ ∀ t, twptp1 t -∗ twptp2 t) →
+  ∀ t, twptp_pre twptp1 t -∗ twptp_pre twptp2 t)%I.
+Proof.
+  iIntros "#H"; iIntros (t) "Hwp". rewrite /twptp_pre.
+  iIntros (t2 σ1 σ2) "Hstep Hσ". iMod ("Hwp" with "[$] [$]") as "[$ ?]".
+  by iApply "H".
+Qed.
+
+Local Instance twptp_pre_mono' : BIMonoPred twptp_pre.
+Proof.
+  constructor; first apply twptp_pre_mono.
+  intros wp Hwp n t1 t2 ?%(discrete_iff _ _)%leibniz_equiv; solve_proper.
+Qed.
+
+Definition twptp (t : list (expr Λ)) : iProp Σ :=
+  uPred_least_fixpoint twptp_pre t.
+
+Lemma twptp_unfold t : twptp t ⊣⊢ twptp_pre twptp t.
+Proof. by rewrite /twptp least_fixpoint_unfold. Qed.
+
+Lemma twptp_ind Ψ :
+  ((□ ∀ t, twptp_pre (λ t, Ψ t ∧ twptp t) t -∗ Ψ t) → ∀ t, twptp t -∗ Ψ t)%I.
+Proof.
+  iIntros "#IH" (t) "H".
+  assert (NonExpansive Ψ).
+  { by intros n ?? ->%(discrete_iff _ _)%leibniz_equiv. }
+  iApply (least_fixpoint_strong_ind _ Ψ with "[] H").
+  iIntros "!#" (t') "H". by iApply "IH".
+Qed.
+
+Instance twptp_Permutation : Proper ((≡ₚ) ==> (⊢)) twptp.
+Proof.
+  iIntros (t1 t1' Ht) "Ht1". iRevert (t1' Ht); iRevert (t1) "Ht1".
+  iApply twptp_ind; iIntros "!#" (t1) "IH"; iIntros (t1' Ht).
+  rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 Hstep) "Hσ".
+  destruct (step_Permutation t1' t1 t2 σ1 σ2) as (t2'&?&?); try done.
+  iMod ("IH" $! t2' with "[% //] Hσ") as "[$ [IH _]]". by iApply "IH".
+Qed.
+
+Lemma twptp_app t1 t2 : twptp t1 -∗ twptp t2 -∗ twptp (t1 ++ t2).
+Proof.
+  iIntros "H1". iRevert (t2). iRevert (t1) "H1".
+  iApply twptp_ind; iIntros "!#" (t1) "IH1". iIntros (t2) "H2".
+  iRevert (t1) "IH1"; iRevert (t2) "H2".
+  iApply twptp_ind; iIntros "!#" (t2) "IH2". iIntros (t1) "IH1".
+  rewrite twptp_unfold /twptp_pre. iIntros (t1'' σ1 σ2 Hstep) "Hσ1".
+  destruct Hstep as [e1 σ1' e2 σ2' efs' t1' t2' ?? Hstep]; simplify_eq/=.
+  apply app_eq_inv in H as [(t&?&?)|(t&?&?)]; subst.
+  - destruct t as [|e1' ?]; simplify_eq/=.
+    + iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]".
+      { by eapply step_atomic with (t1:=[]). }
+      iModIntro. rewrite -{2}(left_id_L [] (++) (e2 :: _)). iApply "IH2".
+      by setoid_rewrite (right_id_L [] (++)).
+    + iMod ("IH1" with "[%] Hσ1") as "[$ [IH1 _]]"; first by econstructor.
+      iAssert (twptp t2) with "[IH2]" as "Ht2".
+      { rewrite twptp_unfold. iApply (twptp_pre_mono with "[] IH2").
+        iIntros "!# * [_ ?] //". }
+      iModIntro. rewrite -assoc_L (comm _ t2) !cons_middle !assoc_L.
+      by iApply "IH1".
+  - iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]"; first by econstructor.
+    iModIntro. rewrite -assoc. by iApply "IH2".
+Qed.
+
+Lemma twp_twptp s Φ e : WP e @ s; ⊤ [{ Φ }] -∗ twptp [e].
+Proof.
+  iIntros "He". remember (⊤ : coPset) as E eqn:HE.
+  iRevert (HE). iRevert (e E Φ) "He". iApply twp_ind.
+  iIntros "!#" (e E Φ); iIntros "IH" (->).
+  rewrite twptp_unfold /twptp_pre /twp_pre. iIntros (t1' σ1' σ2' Hstep) "Hσ1".
+  destruct Hstep as [e1 σ1 e2 σ2 efs [|? t1] t2 ?? Hstep];
+    simplify_eq/=; try discriminate_list.
+  destruct (to_val e1) as [v|] eqn:He1.
+  { apply val_stuck in Hstep; naive_solver. }
+  iMod ("IH" with "Hσ1") as "[_ IH]".
+  iMod ("IH" with "[% //]") as "[$ [[IH _] IHfork]]"; iModIntro.
+  iApply (twptp_app [_] with "[IH]"); first by iApply "IH".
+  clear. iInduction efs as [|e efs] "IH"; simpl.
+  { rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 Hstep).
+    destruct Hstep; simplify_eq/=; discriminate_list. }
+  iDestruct "IHfork" as "[[IH' _] IHfork]".
+  iApply (twptp_app [_] with "[IH']"); [by iApply "IH'"|by iApply "IH"].
+Qed.
+
+Notation world σ := (wsat ∗ ownE ⊤ ∗ state_interp σ)%I.
+
+Lemma twptp_total σ t : world σ -∗ twptp t -∗ ▷ ⌜sn step (t, σ)⌝.
+Proof.
+  iIntros "Hw Ht". iRevert (σ) "Hw". iRevert (t) "Ht".
+  iApply twptp_ind; iIntros "!#" (t) "IH"; iIntros (σ) "(Hw&HE&Hσ)".
+  iApply (pure_mono _ _ (Acc_intro _)). iIntros ([t' σ'] Hstep).
+  rewrite /twptp_pre fupd_eq /fupd_def.
+  iMod ("IH" with "[% //] Hσ [$Hw $HE]") as ">(Hw & HE & Hσ & [IH _])".
+  iApply "IH". by iFrame.
+Qed.
+End adequacy.
+
+Theorem twp_total Σ Λ `{invPreG Σ} s e σ Φ :
+  (∀ `{Hinv : invG Σ},
+     (|={⊤}=> ∃ stateI : state Λ → iProp Σ,
+       let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in
+       stateI σ ∗ WP e @ s; ⊤ [{ Φ }])%I) →
+  sn step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *)
+Proof.
+  intros Hwp.
+  eapply (soundness (M:=iResUR Σ) _ 1); iIntros "/=".
+  iMod wsat_alloc as (Hinv) "[Hw HE]".
+  rewrite fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)".
+  iDestruct "Hwp" as (Istate) "[HI Hwp]".
+  iApply (@twptp_total _ _ (IrisG _ _ Hinv Istate) with "[$Hw $HE $HI]").
+  by iApply (@twp_twptp _ _ (IrisG _ _ Hinv Istate)).
+Qed.