diff --git a/theories/algebra/big_op.v b/theories/algebra/big_op.v index dd1da98a50bdfde9d36562d055d2496fb26e6e27..4ea5f8f7bb50e5b822991dd3b7b8bf75830395dd 100644 --- a/theories/algebra/big_op.v +++ b/theories/algebra/big_op.v @@ -101,7 +101,8 @@ Section list. Lemma big_opL_unit l : ([^o list] k↦y ∈ l, monoid_unit) ≡ (monoid_unit : M). Proof. induction l; rewrite /= ?left_id //. Qed. - Lemma big_opL_gen_proper_2 (R : relation M) f g l1 l2 : + Lemma big_opL_gen_proper_2 {B} (R : relation M) f (g : nat → B → M) + l1 (l2 : list B) : R monoid_unit monoid_unit → Proper (R ==> R ==> R) o → (∀ k, @@ -230,8 +231,8 @@ Section gmap. Implicit Types m : gmap K A. Implicit Types f g : K → A → M. - - Lemma big_opM_gen_proper_2 (R : relation M) f g m1 m2 : + Lemma big_opM_gen_proper_2 {B} (R : relation M) f (g : K → B → M) + m1 (m2 : gmap K B) : subrelation (≡) R → Equivalence R → Proper (R ==> R ==> R) o → (∀ k,