diff --git a/CHANGELOG.md b/CHANGELOG.md
index edb16a12d12d29979c8092e2f823c257202dd665..b7958f09c1d0fe3824761ca8ec2b15746e97f0a5 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -200,6 +200,11 @@ Coq development, but not every API-breaking change is listed.  Changes marked
   exists `heap_lang.derived_laws`.
 * Remove global `Open Scope Z_scope` from `heap_lang.lang`, and leave it up to
   reverse dependencies if they want to `Open Scope Z_scope` or not.
+* Add `min_nat`, a RA for natural numbers with `min` as the operation.
+* Rename `mnat` to `max_nat` and "box" it by creating a separate type for it.
+* Move the RAs for `nat` and `positive` and the `mnat` RA into a separate
+  module. They must now be imported from `From iris.algebra Require Import
+  numbers`.
 
 The following `sed` script should perform most of the renaming (FIXME: incomplete)
 (on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`):
@@ -221,6 +226,8 @@ s/\blist_singletonM_included\b/list_singleton_included/g
 s/\bauth_both_frac_op\b/auth_both_op/g
 # inv_sep
 s/\binv_sep\b/inv_split/g
+# mnat rename
+s/\bmnat\b/max_nat/g
 ' $(find theories -name "*.v")
 ```
 
diff --git a/theories/algebra/numbers.v b/theories/algebra/numbers.v
index d1f65b46a889c7d51674b5d695adbe30daa1c100..cfc0fa746a641e0565bcd8d98bca2584433dafa7 100644
--- a/theories/algebra/numbers.v
+++ b/theories/algebra/numbers.v
@@ -36,6 +36,11 @@ Section nat.
     intros ??; apply local_update_unital_discrete=> z _.
     compute -[minus plus]; lia.
   Qed.
+
+  (* This one has a higher precendence than [is_op_op] so we get a [+] instead
+     of an [â‹…]. *)
+  Global Instance is_op_plus (n1 n2 : nat) : IsOp (n1 + n2) n1 n2.
+  Proof. done. Qed.
 End nat.
 
 (** ** Natural numbers with [max] as the operation. *)
@@ -130,11 +135,6 @@ Section min_nat.
 
   Global Instance : @IdemP min_nat (=) (â‹…).
   Proof. intros [x]. rewrite min_nat_op_min. apply f_equal. lia. Qed.
-
-  (* This one has a higher precendence than [is_op_op] so we get a [+] instead
-     of an [â‹…]. *)
-  Global Instance is_op_plus (n1 n2 : nat) : IsOp (n1 + n2) n1 n2.
-  Proof. done. Qed.
 End min_nat.
 
 (** ** Positive integers with [Pos.add] as the operation. *)