diff --git a/theories/algebra/excl.v b/theories/algebra/excl.v index 027517d48d8cf92a6de77a4c98540e729ee89d57..a61d5e214c3089430562acb09e1e5d0a3d05f852 100644 --- a/theories/algebra/excl.v +++ b/theories/algebra/excl.v @@ -118,10 +118,14 @@ Proof. by destruct mx. Qed. Lemma excl_validN_inv_r n mx a : ✓{n} (mx â‹… Excl' a) → mx = None. Proof. by destruct mx. Qed. -Lemma Excl_includedN n a b : Excl' a ≼{n} Excl' b → a ≡{n}≡ b. -Proof. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. Qed. -Lemma Excl_included a b : Excl' a ≼ Excl' b → a ≡ b. -Proof. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. Qed. +Lemma Excl_includedN n a b : Excl' a ≼{n} Excl' b ↔ a ≡{n}≡ b. +Proof. + split; [|by intros ->]. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. +Qed. +Lemma Excl_included a b : Excl' a ≼ Excl' b ↔ a ≡ b. +Proof. + split; [|by intros ->]. by intros [[c|] Hb%(inj Some)]; inversion_clear Hb. +Qed. End excl. Arguments exclO : clear implicits. diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index 72e75d5cdbd22df474cfac8a1bb729f26bb7595f..7098222ab80bd4aadcb74aa782204dd154a9ef9f 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -90,8 +90,8 @@ Section lifting. Lemma ownP_eq σ1 σ2 κs n : state_interp σ1 κs n -∗ ownP σ2 -∗ ⌜σ1 = σ2âŒ. Proof. iIntros "Hσ◠Hσ◯". rewrite /ownP. - iDestruct (own_valid_2 with "Hσ◠Hσ◯") as %[Hps _]%auth_both_valid. - by pose proof (leibniz_equiv _ _ (Excl_included _ _ Hps)) as ->. + by iDestruct (own_valid_2 with "Hσ◠Hσ◯") + as %[->%Excl_included _]%auth_both_valid. Qed. Lemma ownP_state_twice σ1 σ2 : ownP σ1 ∗ ownP σ2 ⊢ False. Proof. rewrite /ownP -own_op own_valid. by iIntros (?). Qed.