From 20201a2c830ba451f1c012f1c73183f50acd0390 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Wed, 1 Apr 2020 09:29:03 +0200 Subject: [PATCH] Some Coqdoc improvements in the OFE file. --- theories/algebra/ofe.v | 31 +++++++++++++++++-------------- 1 file changed, 17 insertions(+), 14 deletions(-) diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index f781a15d6..f8563361e 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -609,7 +609,7 @@ Proof. by repeat apply ccompose_ne. Qed. -(** unit *) +(** * Unit type *) Section unit. Instance unit_dist : Dist unit := λ _ _ _, True. Definition unit_ofe_mixin : OfeMixin unit. @@ -623,7 +623,7 @@ Section unit. Proof. done. Qed. End unit. -(** empty *) +(** * Empty type *) Section empty. Instance Empty_set_dist : Dist Empty_set := λ _ _ _, True. Definition Empty_set_ofe_mixin : OfeMixin Empty_set. @@ -637,7 +637,7 @@ Section empty. Proof. done. Qed. End empty. -(** Product *) +(** * Product type *) Section product. Context {A B : ofeT}. @@ -684,7 +684,7 @@ Instance prodO_map_ne {A A' B B'} : NonExpansive2 (@prodO_map A A' B B'). Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed. -(** COFE → OFE Functors *) +(** * COFE → OFE Functors *) Record oFunctor := OFunctor { oFunctor_car : ∀ A `{!Cofe A} B `{!Cofe B}, ofeT; oFunctor_map `{!Cofe A1, !Cofe A2, !Cofe B1, !Cofe B2} : @@ -778,7 +778,7 @@ Proof. apply ofe_morO_map_ne; apply oFunctor_contractive; destruct n, Hfg; by split. Qed. -(** Sum *) +(** * Sum type *) Section sum. Context {A B : ofeT}. @@ -867,7 +867,7 @@ Proof. by apply sumO_map_ne; apply oFunctor_contractive. Qed. -(** Discrete OFE *) +(** * Discrete OFEs *) Section discrete_ofe. Context `{Equiv A} (Heq : @Equivalence A (≡)). @@ -919,7 +919,7 @@ Canonical Structure positiveO := leibnizO positive. Canonical Structure NO := leibnizO N. Canonical Structure ZO := leibnizO Z. -(* Option *) +(** * Option type *) Section option. Context {A : ofeT}. @@ -1024,7 +1024,7 @@ Proof. by intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg; apply optionO_map_ne, oFunctor_contractive. Qed. -(** Later *) +(** * Later type *) (** Note that the projection [later_car] is not non-expansive (see also the lemma [later_car_anti_contractive] below), so it cannot be used in the logic. If you need to get a witness out, you should use the lemma [Next_uninj] @@ -1073,7 +1073,8 @@ Section later. Proper (dist n ==> dist_later n) later_car. Proof. move=> [x] [y] /= Hxy. done. Qed. - (* f is contractive iff it can factor into `Next` and a non-expansive function. *) + (** [f] is contractive iff it can factor into [Next] and a non-expansive + function. *) Lemma contractive_alt {B : ofeT} (f : A → B) : Contractive f ↔ ∃ g : later A → B, NonExpansive g ∧ ∀ x, f x ≡ g (Next x). Proof. @@ -1132,7 +1133,7 @@ Proof. destruct n as [|n]; simpl in *; first done. apply oFunctor_ne, Hfg. Qed. -(** Dependently-typed functions over a discrete domain *) +(** * Dependently-typed functions over a discrete domain *) (** This separate notion is useful whenever we need dependent functions, and whenever we want to avoid the hassle of the bundled non-expansive function type. @@ -1244,7 +1245,7 @@ Proof. by apply discrete_funO_map_ne=>c; apply oFunctor_contractive. Qed. -(** Constructing isomorphic OFEs *) +(** * Constructing isomorphic OFEs *) Lemma iso_ofe_mixin {A : ofeT} `{Equiv B, Dist B} (g : B → A) (g_equiv : ∀ y1 y2, y1 ≡ y2 ↔ g y1 ≡ g y2) (g_dist : ∀ n y1 y2, y1 ≡{n}≡ y2 ↔ g y1 ≡{n}≡ g y2) : OfeMixin B. @@ -1287,7 +1288,7 @@ Definition iso_cofe {A B : ofeT} `{Cofe A} (f : A → B) (g : B → A) (gf : ∀ x, g (f x) ≡ x) : Cofe B. Proof. by apply (iso_cofe_subtype (λ _, True) (λ x _, f x) g). Qed. -(** Sigma *) +(** * Sigma type *) Section sigma. Context {A : ofeT} {P : A → Prop}. Implicit Types x : sig P. @@ -1321,8 +1322,9 @@ End sigma. Arguments sigO {_} _. -(** Ofe for [sigT]. The first component must be discrete - and use Leibniz equality, while the second component might be any OFE. *) +(** * SigmaT type *) +(** Ofe for [sigT]. The first component must be discrete and use Leibniz +equality, while the second component might be any OFE. *) Section sigT. Import EqNotations. @@ -1520,6 +1522,7 @@ Arguments sigTOF {_} _%OF. Notation "{ x & P }" := (sigTOF (λ x, P%OF)) : oFunctor_scope. Notation "{ x : A & P }" := (@sigTOF A%type (λ x, P%OF)) : oFunctor_scope. +(** * Isomorphisms between OFEs *) Record ofe_iso (A B : ofeT) := OfeIso { ofe_iso_1 : A -n> B; ofe_iso_2 : B -n> A; -- GitLab