From 0d187bae3ab49902eb7823e8b2f24d2e3d10f515 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Sun, 2 Feb 2020 18:14:29 +0100 Subject: [PATCH] add strongest variant of cinv_alloc_open --- .../base_logic/lib/cancelable_invariants.v | 69 ++++++++++++------- 1 file changed, 44 insertions(+), 25 deletions(-) diff --git a/theories/base_logic/lib/cancelable_invariants.v b/theories/base_logic/lib/cancelable_invariants.v index d38a8816c..248d6dbd5 100644 --- a/theories/base_logic/lib/cancelable_invariants.v +++ b/theories/base_logic/lib/cancelable_invariants.v @@ -60,22 +60,54 @@ Section proofs. iSplit; iIntros "[?|$]"; iLeft; by iApply "HP". Qed. + (*** Allocation rules. *) + (** The "strong" variants permit any infinite [I], and choosing [P] is delayed + until after [γ] was chosen. *) Lemma cinv_alloc_strong (I : gname → Prop) E N : pred_infinite I → - (|={E}=> ∃ γ, ⌜ I γ ⌠∧ cinv_own γ 1 ∗ ∀ P, ▷ P ={E}=∗ cinv N γ P)%I. + (|={E}=> ∃ γ, ⌜ I γ ⌠∗ cinv_own γ 1 ∗ ∀ P, ▷ P ={E}=∗ cinv N γ P)%I. Proof. iIntros (?). iMod (own_alloc_strong 1%Qp I) as (γ) "[Hfresh Hγ]"; [done|done|]. - iExists γ; iIntros "!> {$Hγ $Hfresh}" (P) "HP". + iExists γ. iIntros "!> {$Hγ $Hfresh}" (P) "HP". iMod (inv_alloc N _ (P ∨ cinv_own γ 1) with "[HP]"); eauto. Qed. + (** The "open" variants create the invariant in the open state, and delay + having to prove [P]. *) + Lemma cinv_alloc_strong_open (I : gname → Prop) E N : + pred_infinite I → + ↑N ⊆ E → + (|={E}=> ∃ γ, ⌜ I γ ⌠∗ cinv_own γ 1 ∗ ∀ P, + |={E,E∖↑N}=> cinv N γ P ∗ (▷ P ={E∖↑N,E}=∗ True))%I. + Proof. + iIntros (??). iMod (own_alloc_strong 1%Qp I) as (γ) "[Hfresh Hγ]"; [done|done|]. + iExists γ. iIntros "!> {$Hγ $Hfresh}" (P). + iMod (inv_alloc_open N _ (P ∨ cinv_own γ 1)) as "[Hinv Hclose]"; first by eauto. + iIntros "!>". iFrame. iIntros "HP". iApply "Hclose". iLeft. done. + Qed. + Lemma cinv_alloc_cofinite (G : gset gname) E N : - (|={E}=> ∃ γ, ⌜ γ ∉ G ⌠∧ cinv_own γ 1 ∗ ∀ P, ▷ P ={E}=∗ cinv N γ P)%I. + (|={E}=> ∃ γ, ⌜ γ ∉ G ⌠∗ cinv_own γ 1 ∗ ∀ P, ▷ P ={E}=∗ cinv N γ P)%I. Proof. apply cinv_alloc_strong. apply (pred_infinite_set (C:=gset gname))=> E'. exists (fresh (G ∪ E')). apply not_elem_of_union, is_fresh. Qed. + Lemma cinv_alloc E N P : ▷ P ={E}=∗ ∃ γ, cinv N γ P ∗ cinv_own γ 1. + Proof. + iIntros "HP". iMod (cinv_alloc_cofinite ∅ E N) as (γ _) "[Hγ Halloc]". + iExists γ. iFrame "Hγ". by iApply "Halloc". + Qed. + + Lemma cinv_alloc_open E N P : + ↑N ⊆ E → (|={E,E∖↑N}=> ∃ γ, cinv N γ P ∗ cinv_own γ 1 ∗ (▷ P ={E∖↑N,E}=∗ True))%I. + Proof. + iIntros (?). iMod (cinv_alloc_strong_open (λ _, True)) as (γ) "(_ & Htok & Hmake)"; [|done|]. + { apply pred_infinite_True. } + iMod ("Hmake" $! P) as "[Hinv Hclose]". iIntros "!>". iExists γ. iFrame. + Qed. + + (*** Accessors *) Lemma cinv_open_strong E N γ p P : ↑N ⊆ E → cinv N γ P -∗ (cinv_own γ p ={E,E∖↑N}=∗ @@ -93,28 +125,6 @@ Section proofs. - iDestruct (cinv_own_1_l with "Hown' Hown") as %[]. Qed. - Lemma cinv_alloc E N P : ▷ P ={E}=∗ ∃ γ, cinv N γ P ∗ cinv_own γ 1. - Proof. - iIntros "HP". iMod (cinv_alloc_cofinite ∅ E N) as (γ _) "[Hγ Halloc]". - iExists γ. iFrame "Hγ". by iApply "Halloc". - Qed. - - Lemma cinv_alloc_open E N P : - ↑N ⊆ E → (|={E,E∖↑N}=> ∃ γ, cinv N γ P ∗ cinv_own γ 1 ∗ (▷ P ={E∖↑N,E}=∗ True))%I. - Proof. - iIntros (?). iMod (own_alloc 1%Qp) as (γ) "Hγ"; [done..|]. - iMod (inv_alloc_open N _ (P ∨ cinv_own γ 1)) as "[Hinv Hclose]"; [done..|]. - iExists γ; iIntros "!> {$Hγ $Hinv} HP". iApply "Hclose". by eauto. - Qed. - - Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P. - Proof. - iIntros (?) "#Hinv Hγ". - iMod (cinv_open_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done. - rewrite {2}(union_difference_L (↑N) E)=> //. - iApply "H". by iRight. - Qed. - Lemma cinv_open E N γ p P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (▷ P ={E∖↑N,E}=∗ True). @@ -126,6 +136,15 @@ Section proofs. iApply "H". by iLeft. Qed. + (*** Other *) + Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P. + Proof. + iIntros (?) "#Hinv Hγ". + iMod (cinv_open_strong with "Hinv Hγ") as "($ & Hγ & H)"; first done. + rewrite {2}(union_difference_L (↑N) E)=> //. + iApply "H". by iRight. + Qed. + Global Instance into_inv_cinv N γ P : IntoInv (cinv N γ P) N := {}. Global Instance into_acc_cinv E N γ P p : -- GitLab