diff --git a/tests/proofmode_monpred.ref b/tests/proofmode_monpred.ref index 5b018493c4145a41a19a6427e308a55205e38378..72d54d672894514f9517e13d8894a112866e7edd 100644 --- a/tests/proofmode_monpred.ref +++ b/tests/proofmode_monpred.ref @@ -68,12 +68,12 @@ Tactic failure: iFrame: cannot frame (P i). Ī£ : gFunctors invG0 : invG Ī£ N : namespace - P : iProp Ī£ + š : iProp Ī£ ============================ - "H" : ā” inv N (<pers> P) ⤠- "H2" : ā” ā· <pers> P ⤠+ "H" : ā” inv N (<pers> š) ⤠+ "H2" : ā” ā· <pers> š ⤠--------------------------------------ā” - |={⤠ā āN}=> ā” ā· <pers> P ⤠ā (|={ā¤}=> ā” ā· P ā¤) + |={⤠ā āN}=> ā” ā· <pers> š ⤠ā (|={ā¤}=> ā” ā· š ā¤) 1 subgoal @@ -81,12 +81,12 @@ Tactic failure: iFrame: cannot frame (P i). Ī£ : gFunctors invG0 : invG Ī£ N : namespace - P : iProp Ī£ + š : iProp Ī£ ============================ - "H" : ā” inv N (<pers> P) ⤠- "H2" : ā” ā· <pers> P ⤠+ "H" : ā” inv N (<pers> š) ⤠+ "H2" : ā” ā· <pers> š ⤠--------------------------------------ā” - "Hclose" : ā” ā· <pers> P ={⤠ā āN,ā¤}=ā emp ⤠+ "Hclose" : ā” ā· <pers> š ={⤠ā āN,ā¤}=ā emp ⤠--------------------------------------ā - |={⤠ā āN,ā¤}=> ā” ā· P ⤠+ |={⤠ā āN,ā¤}=> ā” ā· š ⤠diff --git a/tests/proofmode_monpred.v b/tests/proofmode_monpred.v index 41c98a1409bd760d003d0d340690d675de8dbf80..013a1e199f6b613301384c2716257d877ced6385 100644 --- a/tests/proofmode_monpred.v +++ b/tests/proofmode_monpred.v @@ -174,18 +174,19 @@ Section tests_iprop. Context {I : biIndex} `{!invG Ī£}. Local Notation monPred := (monPred I (iPropI Ī£)). - Implicit Types P : iProp Ī£. + Implicit Types P Q R : monPred. + Implicit Types š š š” : iProp Ī£. - Lemma test_iInv_0 N P: - embed (B:=monPred) (inv N (<pers> P)) ={ā¤}=ā ā”ā· Pā¤. + Lemma test_iInv_0 N š : + embed (B:=monPred) (inv N (<pers> š)) ={ā¤}=ā ā”ā· šā¤. Proof. iIntros "#H". iInv N as "#H2". Show. iModIntro. iSplit=>//. iModIntro. iModIntro; auto. Qed. - Lemma test_iInv_0_with_close N P: - embed (B:=monPred) (inv N (<pers> P)) ={ā¤}=ā ā”ā· Pā¤. + Lemma test_iInv_0_with_close N š : + embed (B:=monPred) (inv N (<pers> š)) ={ā¤}=ā ā”ā· šā¤. Proof. iIntros "#H". iInv N as "#H2" "Hclose". Show.