base.v 43.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
(** * General *)
13
14
15
16
17
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
18

19
20
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
21
Arguments id _ _ /.
22
Arguments compose _ _ _ _ _ _ /.
23
Arguments flip _ _ _ _ _ _ /.
24
25
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Instance: Params (@pair) 2.
27

28
29
30
31
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
32
33
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35
36
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
37
38
39
40
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
41

42
43
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
46
Delimit Scope C_scope with C.
Global Open Scope C_scope.

47
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
50
51
52
53
54
55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.
56
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
57

58
59
60
61
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

62
Notation "t $ r" := (t r)
63
  (at level 65, right associativity, only parsing) : C_scope.
64
65
66
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
71

72
73
74
75
76
77
78
79
80
81
82
83
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

100
101
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
102
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
104
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
105

106
107
108
109
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
Class PropHolds (P : Prop) := prop_holds: P.

112
113
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
114
Proof. repeat intro; trivial. Qed.
115
116
117

Ltac solve_propholds :=
  match goal with
118
119
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
120
121
122
123
124
125
126
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

130
131
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
132
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
133
134
135
136
137
138
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
139
  match iA, iB with populate x, populate y => populate (x,y) end.
140
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
141
  match iA with populate x => populate (inl x) end.
142
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
143
  match iB with populate y => populate (inl y) end.
144
145
Instance option_inhabited {A} : Inhabited (option A) := populate None.

146
147
148
149
150
151
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

152
153
154
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
157
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
158
159
160
161
162
163
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
164

165
166
167
168
169
Class EquivE E A := equivE: E  relation A.
Instance: Params (@equivE) 4.
Notation "X ≡{ Γ } Y" := (equivE Γ X Y)
  (at level 70, format "X  ≡{ Γ }  Y") : C_scope.
Notation "(≡{ Γ } )" := (equivE Γ) (only parsing, Γ at level 1) : C_scope.
170
171
172
173
174
Notation "X ≡{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (equivE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ≡{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(≡{ Γ1 , Γ2 , .. , Γ3 } )" := (equivE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
175

176
177
178
179
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
180
181
182
183
184
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
185
186
187
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
188
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
189
  | |- context [ @equiv ?A _ _ _ ] =>
190
    setoid_rewrite (leibniz_equiv_iff (A:=A))
191
192
193
194
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
195
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
196
  | |- context [ @eq ?A _ _ ] =>
197
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
198
199
  end.

200
201
Definition equivL {A} : Equiv A := (=).

202
203
204
205
206
207
208
209
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
210
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
211
212
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
213
214
Hint Extern 0 (_ {_} _) => reflexivity.
Hint Extern 0 (_ {_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
215

216
(** ** Operations on collections *)
217
(** We define operational type classes for the traditional operations and
218
relations on collections: the empty collection [∅], the union [(∪)],
219
220
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
224
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
225
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
230
231
232
233
234
235
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
236

237
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
238
239
240
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
241
Class Intersection A := intersection: A  A  A.
242
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
246
247
248
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
249
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
253
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
254
255
256
257
258
259
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
260

261
262
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
263
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
264
Notation "{[ x ; y ; .. ; z ]}" :=
265
266
267
268
269
270
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
271

272
Class SubsetEq A := subseteq: relation A.
273
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
274
275
276
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
277
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
279
280
281
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
282
283
284
285
286
287
288
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
289

290
Hint Extern 0 (_  _) => reflexivity.
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Class SubsetEqE E A := subseteqE: E  relation A.
Instance: Params (@subseteqE) 4.
Notation "X ⊆{ Γ } Y" := (subseteqE Γ X Y)
  (at level 70, format "X  ⊆{ Γ }  Y") : C_scope.
Notation "(⊆{ Γ } )" := (subseteqE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "X ⊈{ Γ } Y" := (¬X {Γ} Y)
  (at level 70, format "X  ⊈{ Γ }  Y") : C_scope.
Notation "(⊈{ Γ } )" := (λ X Y, X {Γ} Y)
  (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊆{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ }*  Ys") : C_scope.
Notation "(⊆{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (subseteqE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ⊆{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 } )" := (subseteqE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
Notation "X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y" := (¬X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (at level 70, format "X  ⊈{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "(⊈{ Γ1 , Γ2 , .. , Γ3 } )" := (λ X Y, X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (only parsing) : C_scope.
Notation "Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ1 , Γ2 , .. , Γ3 }*  Ys") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 }* )" := (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}))
  (only parsing, Γ1 at level 1) : C_scope.
Hint Extern 0 (_ {_} _) => reflexivity.
322

323
324
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
325
326
327
328
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
329
330
331
332
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
333

334
335
336
337
338
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
339
Class ElemOf A B := elem_of: A  B  Prop.
340
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
349
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
352
353
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
354
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
381
382
383

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
384
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
385

386
387
388
389
390
391
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
392

393
  Lemma disjoint_list_nil  :  @nil A  True.
394
395
396
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
397
End disjoint_list.
398
399

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
400
401
402

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
403
404
405
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
406
407
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
408
Instance: Params (@mret) 3.
409
410
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
411
Instance: Params (@mbind) 4.
412
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
413
Arguments mjoin {_ _ _} !_ /.
414
Instance: Params (@mjoin) 3.
415
416
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
417
Instance: Params (@fmap) 4.
418
419
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
420
Instance: Params (@omap) 4.
421

422
423
424
425
426
427
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
428
  (at level 65, only parsing, right associativity) : C_scope.
429
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
430
Notation "' ( x1 , x2 ) ← y ; z" :=
431
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
432
  (at level 65, only parsing, right associativity) : C_scope.
433
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
434
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
435
  (at level 65, only parsing, right associativity) : C_scope.
436
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
437
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
438
  (at level 65, only parsing, right associativity) : C_scope.
439
440
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
441
  (at level 65, only parsing, right associativity) : C_scope.
442
443
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
444
  (at level 65, only parsing, right associativity) : C_scope.
445

446
447
448
449
450
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

451
Class MGuard (M : Type  Type) :=
452
453
454
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  (at level 65, only parsing, right associativity) : C_scope.
456
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
457
  (at level 65, only parsing, right associativity) : C_scope.
458

459
(** ** Operations on maps *)
460
461
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
462
The function look up [m !! k] should yield the element at key [k] in [m]. *)
463
Class Lookup (K A M : Type) := lookup: K  M  option A.
464
465
466
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
467
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
468
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
469
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
470
471
472

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
473
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
474
Instance: Params (@insert) 5.
475
476
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
477
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
478

479
480
481
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
482
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
Instance: Params (@delete) 4.
484
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
485
486

(** The function [alter f k m] should update the value at key [k] using the
487
function [f], which is called with the original value. *)
488
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
489
Instance: Params (@alter) 5.
490
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
491
492

(** The function [alter f k m] should update the value at key [k] using the
493
494
495
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
496
497
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
498
Instance: Params (@partial_alter) 4.
499
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
500
501
502

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
503
504
505
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
506
507

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
508
509
510
511
512
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
513

514
515
516
517
518
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
519
Instance: Params (@union_with) 3.
520
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
521

522
523
524
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
525
Instance: Params (@intersection_with) 3.
526
527
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

528
529
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
530
Instance: Params (@difference_with) 3.
531
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
532

533
534
535
536
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

537
538
539
540
541
542
543
544
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
545
Instance: Params (@insertE) 6.
546
547
548
549
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

550
551
552
553
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
554
555
556
557
558
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
559
560
561
562
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
563
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
564
  idempotent:  x, R (f x x) x.
565
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
566
  commutative:  x y, R (f x y) (f y x).
567
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
568
  left_id:  x, R (f i x) x.
569
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
570
  right_id:  x, R (f x i) x.
571
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
572
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
573
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
574
  left_absorb:  x, R (f i x) i.
575
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
576
  right_absorb:  x, R (f x i) i.
577
578
579
580
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
581
582
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
583
584
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
585
  trichotomy :  x y, R x y  x = y  R y x.
586
Class TrichotomyT {A} (R : relation A) :=
587
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
588

589
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
590
Arguments injective {_ _ _ _} _ {_} _ _ _.
591
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
592
593
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
594
595
596
597
598
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
599
600
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
601
602
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
603
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
604
605
606
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
607

608
609
610
Instance id_injective {A} : Injective (=) (=) (@id A).
Proof. intros ??; auto. Qed.

611
612
613
614
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
615
Proof. auto. Qed.
616
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
617
  f x y = f y x.
618
Proof. auto. Qed.
619
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
620
Proof. auto. Qed.
621
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
622
Proof. auto. Qed.
623
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
624
  f x (f y z) = f (f x y) z.
625
Proof. auto. Qed.
626
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
627
628
  f i x = i.
Proof. auto. Qed.
629
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
630
631
  f x i = i.
Proof. auto. Qed.
632
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
633
634
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
635
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
636
637
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
638

639
(** ** Axiomatization of ordered structures *)
640
641
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
642
Class PartialOrder {A} (R : relation A) : Prop := {
643
644
  partial_order_pre :> PreOrder R;
  partial_order_anti_symmetric :> AntiSymmetric (=) R
645
646
}.
Class TotalOrder {A} (R : relation A) : Prop := {
647
648
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
649
650
}.

651
652
653
654
655
656
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
657
658
659
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
660
}.
661
662
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
663
664
665
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
666
}.
667
668
669
670
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
671
}.
672

673
(** ** Axiomatization of collections *)
674
675
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
676
Instance: Params (@map) 3.
677
678
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
679
  not_elem_of_empty (x : A) : x  ;
680
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
681
682
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
683
684
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
685
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
686
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
687
688
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
689
690
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
691
  collection_ops :>> Collection A C;
692
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
693
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
694
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
}.

697
698
699
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
700
Class Elements A C := elements: C  list A.
701
Instance: Params (@elements) 3.
702
703
704
705
706
707
708
709
710
711
712
713
714

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
715
716
717
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
718
  fin_collection :>> Collection A C;
719
720
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
721
722
}.
Class Size C := size: C  nat.
723
Arguments size {_ _} !_ / : simpl nomatch.
724
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
725

726
727
728
729
730
731
732
733
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
734
735
736
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
737
738
739
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
740
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
741
742
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y