list.v 153 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
6
From Coq Require Export Permutation.
From stdpp Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

40
(** * Definitions *)
41
42
43
44
45
46
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

47
48
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
Instance list_lookup {A} : Lookup nat A (list A) :=
50
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
51
  match l with
52
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
53
  end.
54
55
56

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
59
60
  match l with
  | [] => []
61
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
62
  end.
63

64
65
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
66
67
68
69
70
71
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
72
73
74
75
76
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
77

78
79
80
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
81
82
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
83
84
  match l with
  | [] => []
85
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
86
  end.
87
88
89

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
90
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
91
92
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
97
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
  match l with
  | [] => []
100
  | x :: l => if decide (P x) then x :: filter P l else filter P l
101
102
103
104
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
105
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
106
107
  fix go l :=
  match l with
108
109
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
110
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
113
114

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
115
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
118
119

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

120
121
122
123
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
124

Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
127
128
129
130
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
131
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
134
  end.
Arguments resize {_} !_ _ !_.

135
136
137
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
138
139
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
140
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
141
142
  end.

143
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
144
145
146
147
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
148

149
150
151
152
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
153
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
154
155
156

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
157
158
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
159
160
161
162
163
164
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
165
166
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
167
168
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
169
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
170
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
171
  fix go l :=
172
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
173
174
175
176
177

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
178
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
179
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
180
181
182
183
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
184
185
186
187
188
189
190
191
192
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

193
194
195
196
197
198
199
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
200

201
202
203
204
205
206
207
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
208
209
210
211

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
212
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
213
214
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
215
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
216

217
218
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
219
220
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
221
222
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
223
224
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226
227
228
229
230
231
232
233
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
234
      if decide_rel (=) x1 x2
235
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
236
237
238
239
240
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
241
242
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
243
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
244

245
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
246
247
248
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
249
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
250
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
251
Infix "`sublist`" := sublist (at level 70) : C_scope.
252
Hint Extern 0 (_ `sublist` _) => reflexivity.
253
254

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
255
from [l1] while possiblity changing the order. *)
256
257
258
259
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
260
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
261
262
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
263
Hint Extern 0 (_ `contains` _) => reflexivity.
264
265
266
267
268
269
270
271
272
273

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
274
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
275
276
    end.
End contains_dec_help.
277

278
279
280
281
282
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
308
      then list_difference l k else x :: list_difference l k
309
    end.
310
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
311
312
313
314
315
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
316
      then x :: list_intersection l k else list_intersection l k
317
318
319
320
321
322
323
324
325
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
326
327

(** * Basic tactics on lists *)
328
(** The tactic [discriminate_list] discharges a goal if it contains
329
330
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
331
Tactic Notation "discriminate_list" hyp(H) :=
332
  apply (f_equal length) in H;
333
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
334
335
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
336

337
(** The tactic [simplify_list_eq] simplifies hypotheses involving
338
339
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
340
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
341
342
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
343
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
344
345
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
346
  intros ? Hl. apply app_inj_1; auto.
347
348
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
349
Ltac simplify_list_eq :=
350
  repeat match goal with
351
  | _ => progress simplify_eq/=
352
  | H : _ ++ _ = _ ++ _ |- _ => first
353
    [ apply app_inv_head in H | apply app_inv_tail in H
354
355
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
356
  | H : [?x] !! ?i = Some ?y |- _ =>
357
    destruct i; [change (Some x = Some y) in H | discriminate]
358
  end.
359

360
361
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Context {A : Type}.
363
364
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

366
367
368
369
370
Section setoid.
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (list A)).
  Proof.
    split.
371
372
373
    - intros l; induction l; constructor; auto.
    - induction 1; constructor; auto.
    - intros l1 l2 l3 Hl; revert l3.
374
      induction Hl; inversion_clear 1; constructor; try etrans; eauto.
375
376
377
378
379
380
381
382
383
  Qed.
  Global Instance cons_proper : Proper (() ==> () ==> ()) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper (() ==> () ==> ()) (@app A).
  Proof.
    induction 1 as [|x y l k ?? IH]; intros ?? Htl; simpl; auto.
    by apply cons_equiv, IH.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
384
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
385
386
End setoid.

387
Global Instance: Inj2 (=) (=) (=) (@cons A).
388
Proof. by injection 1. Qed.
389
Global Instance:  k, Inj (=) (=) (k ++).
390
Proof. intros ???. apply app_inv_head. Qed.
391
Global Instance:  k, Inj (=) (=) (++ k).
392
Proof. intros ???. apply app_inv_tail. Qed.
393
Global Instance: Assoc (=) (@app A).
394
395
396
397
398
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
399

400
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
401
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
402
403
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
404
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
405
406
407
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
408
409
Proof.
  revert l2. induction l1; intros [|??] H.
410
411
412
413
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
414
Qed.
415
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
416
  Decision (l = k) := list_eq_dec dec.
417
418
419
420
421
422
423
424
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
425
Lemma nil_or_length_pos l : l = []  length l  0.
426
Proof. destruct l; simpl; auto with lia. Qed.
427
Lemma nil_length_inv l : length l = 0  l = [].
428
429
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
430
Proof. by destruct i. Qed.
431
Lemma lookup_tail l i : tail l !! i = l !! S i.
432
Proof. by destruct l. Qed.
433
434
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
435
  revert i. induction l; intros [|?] ?; simplify_eq/=; auto with arith.
436
437
438
439
440
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
441
  revert i. induction l; intros [|?] ?; simplify_eq/=; eauto with lia.
442
443
444
445
446
447
448
449
450
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
451
452
453
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof.
455
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
456
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
457
458
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
459
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Qed.
461
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
462
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
463
464
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
465
Lemma lookup_app_r l1 l2 i :
466
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
467
468
469
470
471
472
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
473
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
474
      simplify_eq/=; auto with lia.
475
    destruct (IH i) as [?|[??]]; auto with lia.
476
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
477
Qed.
478
479
480
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
481

482
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
483
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
484
Lemma alter_length f l i : length (alter f i l) = length l.
485
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
486
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
487
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
488
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
489
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
491
Proof.
492
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
493
Qed.
494
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
495
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
496
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
497
Proof.
498
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
499
Qed.
500
501
502
503
504
505
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
506
  - intros Hy. assert (j < length l).
507
508
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
509
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
510
511
512
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
513
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
514
515
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
516
Proof.
517
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
518
519
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
Qed.
521
522
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
523
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
524
Lemma alter_app_r f l1 l2 i :
525
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
526
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
527
528
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
529
530
531
532
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
533
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
534
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
535
536
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
537
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
538
539
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
540
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
541
542
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
543
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
544
545
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
546
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
547
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
548
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
549
550
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
551
552
553
554
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
555
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
556
Proof. induction l1; f_equal/=; auto. Qed.
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
595
  - intros Hy. assert (j < length l).
596
597
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
598
  - intuition. by rewrite list_lookup_inserts by lia.
599
600
601
602
603
604
605
606
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

607
(** ** Properties of the [elem_of] predicate *)
608
Lemma not_elem_of_nil x : x  [].
609
Proof. by inversion 1. Qed.
610
Lemma elem_of_nil x : x  []  False.
611
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
612
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
613
Proof. destruct l. done. by edestruct 1; constructor. Qed.
614
615
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
616
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
618
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof. rewrite elem_of_cons. tauto. Qed.
620
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
621
Proof.
622
  induction l1.
623
624
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
625
Qed.
626
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
627
Proof. rewrite elem_of_app. tauto. Qed.
628
Lemma elem_of_list_singleton x y : x  [y]  x = y.
629
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
631
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
632
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
633
Proof.
634
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
635
  by exists (y :: l1), l2.
636
Qed.
637
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
638
Proof.
639
640
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
641
Qed.
642
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
643
Proof.
644
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
645
Qed.
646
647
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
648
649
650
651
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
652
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
653
      setoid_rewrite elem_of_cons; naive_solver.
654
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
655
      simplify_eq; try constructor; auto.
656
Qed.
657

658
(** ** Properties of the [NoDup] predicate *)
659
660
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
661
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
662
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
663
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
664
Proof. rewrite NoDup_cons. by intros [??]. Qed.
665
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
666
Proof. rewrite NoDup_cons. by intros [??]. Qed.
667
Lemma NoDup_singleton x : NoDup [x].
668
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
669
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
670
Proof.
671
  induction l; simpl.
672
673
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
674
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
675
Qed.
676
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
677
678
Proof.
  induction 1 as [|x l k Hlk IH | |].
679
680
681
682
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
683
Qed.
684
685
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
686
687
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
688
689
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
690
691
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
692
693
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
694
Proof.
695
696
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
697
  - rewrite elem_of_list_lookup. intros [i ?].
698
    by feed pose proof (Hl (S i) 0 x); auto.
699
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
700
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
701

702
703
704
705
706
707
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
708
    | x :: l =>
709
710
711
712
713
714
715
716
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
717
    end.
718
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
Robbert Krebbers's avatar