fin_maps.v 70.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
43
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
}.

46
47
48
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
49
50
significant performance loss to make including them in the finite map interface
worthwhile. *)
51
52
53
54
55
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
56
  partial_alter (λ _, None).
57
Instance map_singleton `{PartialAlter K A M, Empty M} :
58
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
59

60
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
61
  fold_right (λ p, <[p.1:=p.2]>) .
62
63
64
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
65

66
67
68
69
70
71
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73
74
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
77
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
78
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
83
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
86
87
88
89
90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
91
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96
97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99
100
101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102
103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107
108
109
110
111
112
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

113
114
115
116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
(** ** Setoids *)
Section setoid.
119
120
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
  Proof.
    split.
123
124
    - by intros m i.
    - by intros m1 m2 ? i.
125
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
131
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
134
135
136
137
138
139
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
140
141
142
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
145
146
147
148
149
150
151
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
152
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
153
    (() ==> () ==> ())%signature f g 
154
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
157
158
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
159
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
162
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
163
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
166
167
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Qed.
169
170
171
172
173
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
174
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
175
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
176
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
177
178
179
180
181
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
182
183
184
End setoid.

(** ** General properties *)
185
186
187
188
189
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
191
192
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
193
Global Instance: EmptySpec (M A).
194
Proof.
195
196
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
197
Qed.
198
199
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
  split; [intros m i; by destruct (m !! i); simpl|].
201
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
203
    done || etrans; eauto.
204
Qed.
205
Global Instance: PartialOrder (() : relation (M A)).
206
Proof.
207
208
209
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
210
211
212
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
213
Proof. rewrite !map_subseteq_spec. auto. Qed.
214
215
216
217
218
219
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
220
221
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
222
223
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
224
225
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
226
227
228
229
230
231
232
233
234
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
235
236
237
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
238
239
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
240
241

(** ** Properties of the [partial_alter] operation *)
242
243
244
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
245
246
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
247
248
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
249
250
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
251
252
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
253
Qed.
254
Lemma partial_alter_commute {A} f g (m : M A) i j :
255
  i  j  partial_alter f i (partial_alter g j m) =
256
257
    partial_alter g j (partial_alter f i m).
Proof.
258
259
260
261
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
262
  - by rewrite lookup_partial_alter,
263
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
264
  - by rewrite !lookup_partial_alter_ne by congruence.
265
266
267
268
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
269
270
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
271
Qed.
272
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
273
Proof. by apply partial_alter_self_alt. Qed.
274
Lemma partial_alter_subseteq {A} f (m : M A) i :
275
  m !! i = None  m  partial_alter f i m.
276
277
278
279
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
280
Lemma partial_alter_subset {A} f (m : M A) i :
281
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
282
Proof.
283
284
285
286
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
287
288
289
Qed.

(** ** Properties of the [alter] operation *)
290
291
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
292
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
293
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
294
Proof. unfold alter. apply lookup_partial_alter. Qed.
295
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
296
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
297
298
299
300
301
302
303
304
305
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
306
307
308
309
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
310
  destruct (decide (i = j)) as [->|?].
311
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
312
  - rewrite lookup_alter_ne by done. naive_solver.
313
314
315
316
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
317
318
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
319
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
322
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
324
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
325
  by rewrite lookup_alter_ne by done.
326
327
328
329
330
331
332
333
334
335
336
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
337
  - destruct (decide (i = j)) as [->|?];
338
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
339
  - intros [??]. by rewrite lookup_delete_ne.
340
Qed.
341
342
343
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
344
345
346
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
347
348
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
349
350
351
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
352
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
353
354
355
356
357
358
359
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
360
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
361
Proof.
362
363
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
364
365
366
367
368
369
370
371
372
373
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
374
375
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
376
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
377
378
379
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
380
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
381
  m1  m2  delete i m1  delete i m2.
382
383
384
385
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
386
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
387
Proof.
388
389
390
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
391
Qed.
392
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
393
394
395
396
397
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
398
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
399
Proof. rewrite lookup_insert. congruence. Qed.
400
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
401
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
402
403
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
404
405
406
407
408
409
410
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
411
  - destruct (decide (i = j)) as [->|?];
412
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
413
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
414
Qed.
415
416
417
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
418
419
420
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
421
422
423
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
424
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
426
427
428
429
430
431
432
433
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
434
435
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
436
Qed.
437
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
438
Proof. apply partial_alter_subseteq. Qed.
439
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
441
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
443
Proof.
444
445
446
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
447
448
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
449
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
450
Proof.
451
452
453
454
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
455
456
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
457
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
458
Proof.
459
460
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
461
462
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
463
464
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
466
Proof.
467
468
469
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
470
471
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
472
  m1 !! i = None  <[i:=x]> m1  m2 
473
474
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
475
  intros Hi Hm1m2. exists (delete i m2). split_and?.
476
477
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
478
479
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
480
Qed.
481
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
482
Proof. done. Qed.
483
484
485

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
486
  {[i := x]} !! j = Some y  i = j  x = y.
487
Proof.
488
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
489
Qed.
490
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
491
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
492
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
493
Proof. by rewrite lookup_singleton_Some. Qed.
494
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
495
Proof. by rewrite lookup_singleton_None. Qed.
496
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
497
498
499
500
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
501
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
502
Proof.
503
  unfold singletonM, map_singleton, insert, map_insert.
504
505
  by rewrite <-partial_alter_compose.
Qed.
506
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
507
Proof.
508
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
509
510
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
511
512
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
513
  i  j  alter f i {[j := x]} = {[j := x]}.
514
Proof.
515
516
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
517
518
Qed.

519
520
521
522
523
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
524
525
526
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
527
528
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
529
Qed.
530
531
532
533
534
535
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
536
537
538
539
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
540
541
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
542
Qed.
543
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
544
545
546
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
547
Lemma omap_singleton {A B} (f : A  option B) i x y :
548
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
549
Proof.
550
551
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
552
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
554
555
556
557
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
558
559
560
561
562
563
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
566
567
568
569
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
571
572
573
574
575
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
576

577
578
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
579
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
580
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
581
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
582
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
583
584
585
586
587
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
588
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
589
  destruct (decide (i = j)) as [->|].
590
591
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
592
Qed.
593
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
594
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
595
Proof.
596
597
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
598
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
599
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
600
601
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
602
  map_of_list l !! i = Some x  (i,x)  l.
603
Proof.
604
605
606
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
607
608
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
609
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
610
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
611
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
612
  i  l.*1  map_of_list l !! i = None.
613
Proof.
614
615
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
616
617
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
618
  map_of_list l !! i = None  i  l.*1.
619
Proof.
620
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
621
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
622
623
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
624
625
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
626
  i  l.*1  map_of_list l !! i = None.
627
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
628
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
629
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
630
631
632
633
634
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
635
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
636
Proof.
637
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
638
639
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
640
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
641
642
643
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
644
    by auto using NoDup_fst_map_to_list.
645
646
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
647
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
648
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
649
Lemma map_to_list_inj {A} (m1 m2 : M A) :
650
  map_to_list m1  map_to_list m2  m1 = m2.
651
Proof.
652
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
653
  auto using map_of_list_proper, NoDup_fst_map_to_list.
654
Qed.
655
656
657
658
659
660
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
661
662
663
664
665
666
667
668
669
670
671
672
673

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

674
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
675
676
677
678
679
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
680
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
681
Proof.
682
  intros. apply map_of_list_inj; csimpl.
683
684
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
685
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
686
    rewrite elem_of_map_to_list in Hlookup. congruence.
687
  - by rewrite !map_of_to_list.
688
Qed.
689
690
691
692
693
694
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
695
696
697
698
699
700
701
702
703
704
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

705
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
706