list.v 140 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
38
39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48
49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50
51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55
56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
59
60
61
62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64
65
66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67
68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73
74
75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77
78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87
88
89
90
91
92
93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105
106
107
108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
114
115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
  end.
Arguments resize {_} !_ _ !_.

120
121
122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123
124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126
127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129
130
131
132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134
135
136
137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139
140
141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142
143
144
145
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
146
147
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
148
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
149
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
150
  fix go l :=
151
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
152
153
154
155
156

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
157
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
158
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
159
160
161
162
163
164
165
166
167
168
169
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
170

171
172
173
174
175
176
177
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
178
179
180
181

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
182
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
183
184
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
185
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
186

187
188
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
189
190
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
191
192
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
193
194
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196
197
198
199
200
201
202
203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206
207
208
209
210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211
212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216
217
218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221
Infix "`sublist`" := sublist (at level 70) : C_scope.
222
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
223
224

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
225
from [l1] while possiblity changing the order. *)
226
227
228
229
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
230
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
231
232
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
233
Hint Extern 0 (?x `contains` ?y) => reflexivity.
234
235
236
237
238
239
240
241
242
243

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
244
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
245
246
    end.
End contains_dec_help.
247

248
249
250
251
252
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
278
      then list_difference l k else x :: list_difference l k
279
    end.
280
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
281
282
283
284
285
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
286
      then x :: list_intersection l k else list_intersection l k
287
288
289
290
291
292
293
294
295
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
296
297

(** * Basic tactics on lists *)
298
299
300
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
301
302
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
303
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
304
Tactic Notation "discriminate_list_equality" :=
305
306
307
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
308

309
310
311
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
312
313
314
315
316
317
318
319
320
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
321
322
323
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
324
  | H : _ ++ _ = _ ++ _ |- _ => first
325
326
327
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
328
  | H : [?x] !! ?i = Some ?y |- _ =>
329
330
331
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
332
333
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
334

335
336
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Context {A : Type}.
338
339
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
340

341
342
343
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
344
Proof. intros ???. apply app_inv_head. Qed.
345
Global Instance:  k, Injective (=) (=) (++ k).
346
Proof. intros ???. apply app_inv_tail. Qed.
347
348
349
350
351
352
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
353

354
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
355
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
356
357
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
358
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
359
360
361
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
362
363
Proof.
  revert l2. induction l1; intros [|??] H.
364
  * done.
365
366
  * discriminate (H 0).
  * discriminate (H 0).
367
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
368
Qed.
369
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
370
  Decision (l = k) := list_eq_dec dec.
371
372
373
374
375
376
377
378
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
379
Lemma nil_or_length_pos l : l = []  length l  0.
380
Proof. destruct l; simpl; auto with lia. Qed.
381
Lemma nil_length_inv l : length l = 0  l = [].
382
383
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
384
Proof. by destruct i. Qed.
385
Lemma lookup_tail l i : tail l !! i = l !! S i.
386
Proof. by destruct l. Qed.
387
388
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
389
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
390
391
392
393
394
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
395
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
396
397
398
399
400
401
402
403
404
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
405
406
407
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Proof.
409
410
411
412
413
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
Qed.
415
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
416
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
417
418
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
419
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
420
421
422
423
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
424
425
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
426
Proof. by rewrite lookup_app_r. Qed.
427
428
429
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
430
431
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
432
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
433
434
435
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
436

437
Lemma alter_length f l i : length (alter f i l) = length l.
438
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
439
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
440
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
441
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
442
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
443
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
444
Proof.
445
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
446
Qed.
447
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
448
449
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
450
Proof.
451
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
452
Qed.
453
454
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
459
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
460
461
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
462
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
463
Lemma alter_app_r f l1 l2 i :
464
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
465
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
466
467
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
468
469
470
471
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
472
473
474
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
475
476
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
477
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
478
479
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
480
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
481
482
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
483
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
484
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
485
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
486
487
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
488
489
490
491
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
492
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
493
Proof. induction l1; f_equal'; auto. Qed.
494

495
(** ** Properties of the [elem_of] predicate *)
496
Lemma not_elem_of_nil x : x  [].
497
Proof. by inversion 1. Qed.
498
Lemma elem_of_nil x : x  []  False.
499
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
500
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
501
Proof. destruct l. done. by edestruct 1; constructor. Qed.
502
503
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
504
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
505
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
506
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
507
Proof. rewrite elem_of_cons. tauto. Qed.
508
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
509
Proof.
510
  induction l1.
511
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
512
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
513
Qed.
514
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
Proof. rewrite elem_of_app. tauto. Qed.
516
Lemma elem_of_list_singleton x y : x  [y]  x = y.
517
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
519
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
520
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
521
Proof.
522
523
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
524
Qed.
525
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
526
Proof.
527
528
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
529
Qed.
530
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
531
Proof.
532
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
533
Qed.
534
535
536
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

537
(** ** Properties of the [NoDup] predicate *)
538
539
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
540
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
541
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
542
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
543
Proof. rewrite NoDup_cons. by intros [??]. Qed.
544
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
545
Proof. rewrite NoDup_cons. by intros [??]. Qed.
546
Lemma NoDup_singleton x : NoDup [x].
547
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
548
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
Proof.
550
  induction l; simpl.
551
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
552
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
554
Qed.
555
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
556
557
558
559
560
561
562
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
563
564
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
565
566
567
568
569
570
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
571
572
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
573
Proof.
574
575
576
577
578
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
579
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
580

581
582
583
584
585
586
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
587
    | x :: l =>
588
589
590
591
592
593
594
595
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
596
    end.
597
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
598
599
600
601
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
602
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
603
604
605
606
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
607
End no_dup_dec.
608

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

672
(** ** Properties of the [filter] function *)
673
674
675
676
677
678
679
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
680
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
681
682
683
684
685
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
686

687
688
689
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
690
691
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
692
  Proof.
693
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
694
695
696
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
697
698
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
699
700
701
702
703
704
705
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
706
707
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
708
709
710
711
712
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

713
(** ** Properties of the [reverse] function *)
714
715
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
716
Lemma reverse_singleton x : reverse [x] = [x].
717
Proof. done. Qed.
718
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
719
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
720
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
721
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
722
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
723
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
724
Lemma reverse_length l : length (reverse l) = length l.
725
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
726
Lemma reverse_involutive l : reverse (reverse l) = l.
727
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
743

744
745
746
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
747
748
749
750
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
751

752
753
754
755
756
757
758
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
759
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
760
Proof. by destruct n. Qed.
761
Lemma take_app l k : take (length l) (l ++ k) = l.
762
Proof. induction l; f_equal'; auto. Qed.
763
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
764
Proof. intros Hn. by rewrite Hn, take_app. Qed.
765
Lemma take_app_le l k