list.v 152 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export prelude.numbers prelude.base prelude.decidable prelude.option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
(** * Definitions *)
38
39
40
41
42
43
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

44
45
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Instance list_lookup {A} : Lookup nat A (list A) :=
47
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
48
  match l with
49
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
50
  end.
51
52
53

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
54
55
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
56
57
  match l with
  | [] => []
58
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
59
  end.
60

61
62
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
63
64
65
66
67
68
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
69
70
71
72
73
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
74

75
76
77
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
78
79
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
80
81
  match l with
  | [] => []
82
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
83
  end.
84
85
86

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
87
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
88
89
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
90
91
92
93

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
94
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
  match l with
  | [] => []
97
  | x :: l => if decide (P x) then x :: filter P l else filter P l
98
99
100
101
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
102
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
103
104
  fix go l :=
  match l with
105
106
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
107
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
110
111

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
112
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
115
116

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

117
118
119
120
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
121

Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
128
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
131
  end.
Arguments resize {_} !_ _ !_.

132
133
134
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
135
136
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
137
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
138
139
  end.

140
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
141
142
143
144
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
145

146
147
148
149
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
150
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
151
152
153

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
154
155
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
156
157
158
159
160
161
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
162
163
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
164
165
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
166
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
167
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
168
  fix go l :=
169
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
170
171
172
173
174

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
175
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
176
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
177
178
179
180
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
184
185
186
187
188
189
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

190
191
192
193
194
195
196
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
197

198
199
200
201
202
203
204
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
205
206
207
208

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
209
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
210
211
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
212
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
213

214
215
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
216
217
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
218
219
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
220
221
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
222

223
224
225
226
227
228
229
230
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
231
      if decide_rel (=) x1 x2
232
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
233
234
235
236
237
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
238
239
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
240
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
241

242
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
243
244
245
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
246
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
247
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
248
Infix "`sublist`" := sublist (at level 70) : C_scope.
249
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
250
251

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
252
from [l1] while possiblity changing the order. *)
253
254
255
256
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
257
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
258
259
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
260
Hint Extern 0 (?x `contains` ?y) => reflexivity.
261
262
263
264
265
266
267
268
269
270

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
271
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
272
273
    end.
End contains_dec_help.
274

275
276
277
278
279
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
305
      then list_difference l k else x :: list_difference l k
306
    end.
307
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
308
309
310
311
312
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
313
      then x :: list_intersection l k else list_intersection l k
314
315
316
317
318
319
320
321
322
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
323
324

(** * Basic tactics on lists *)
325
326
327
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
328
329
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
330
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
331
Tactic Notation "discriminate_list_equality" :=
332
333
334
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
335

336
337
338
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
339
340
341
342
343
344
345
346
347
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
348
Ltac simplify_list_equality :=
349
  repeat match goal with
350
  | _ => progress simplify_equality'
351
  | H : _ ++ _ = _ ++ _ |- _ => first
352
353
354
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
355
  | H : [?x] !! ?i = Some ?y |- _ =>
356
    destruct i; [change (Some x = Some y) in H | discriminate]
357
  end.
358

359
360
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
361
Context {A : Type}.
362
363
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
Section setoid.
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (list A)).
  Proof.
    split.
    * intros l; induction l; constructor; auto.
    * induction 1; constructor; auto.
    * intros l1 l2 l3 Hl; revert l3.
      induction Hl; inversion_clear 1; constructor; try etransitivity; eauto.
  Qed.
  Global Instance cons_proper : Proper (() ==> () ==> ()) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper (() ==> () ==> ()) (@app A).
  Proof.
    induction 1 as [|x y l k ?? IH]; intros ?? Htl; simpl; auto.
    by apply cons_equiv, IH.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
  Proof.
    intros l1 l2; split; [|by intros <-].
    induction 1; f_equal; fold_leibniz; auto.
  Qed.
End setoid.

389
390
391
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
392
Proof. intros ???. apply app_inv_head. Qed.
393
Global Instance:  k, Injective (=) (=) (++ k).
394
Proof. intros ???. apply app_inv_tail. Qed.
395
396
397
398
399
400
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
401

402
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
403
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
404
405
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
406
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
407
408
409
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
410
411
Proof.
  revert l2. induction l1; intros [|??] H.
412
  * done.
413
414
  * discriminate (H 0).
  * discriminate (H 0).
415
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
416
Qed.
417
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
418
  Decision (l = k) := list_eq_dec dec.
419
420
421
422
423
424
425
426
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
427
Lemma nil_or_length_pos l : l = []  length l  0.
428
Proof. destruct l; simpl; auto with lia. Qed.
429
Lemma nil_length_inv l : length l = 0  l = [].
430
431
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
432
Proof. by destruct i. Qed.
433
Lemma lookup_tail l i : tail l !! i = l !! S i.
434
Proof. by destruct l. Qed.
435
436
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
437
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
438
439
440
441
442
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
443
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
444
445
446
447
448
449
450
451
452
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
453
454
455
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Proof.
457
458
459
460
461
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
Qed.
463
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
464
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
465
466
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
467
Lemma lookup_app_r l1 l2 i :
468
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
469
470
471
472
473
474
475
476
477
478
479
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
  * revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_equality'; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  * intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
480
481
482
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
483

484
485
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal'. Qed.
486
Lemma alter_length f l i : length (alter f i l) = length l.
487
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
488
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
489
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
490
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
491
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
493
Proof.
494
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
495
Qed.
496
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
497
498
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
499
Proof.
500
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
501
Qed.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  * intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  * intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal'; auto. Qed.
516
517
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Proof.
519
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
520
521
  * by exists 1, x1.
  * by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
522
Qed.
523
524
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
525
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
526
Lemma alter_app_r f l1 l2 i :
527
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
528
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
529
530
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
531
532
533
534
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
535
536
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
537
538
539
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
540
541
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
542
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
543
544
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
545
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
546
547
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
548
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
549
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
550
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
551
552
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
553
554
555
556
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
557
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
558
Proof. induction l1; f_equal'; auto. Qed.
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  * intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  * intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

609
(** ** Properties of the [elem_of] predicate *)
610
Lemma not_elem_of_nil x : x  [].
611
Proof. by inversion 1. Qed.
612
Lemma elem_of_nil x : x  []  False.
613
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
614
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
615
Proof. destruct l. done. by edestruct 1; constructor. Qed.
616
617
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
618
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
620
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
Proof. rewrite elem_of_cons. tauto. Qed.
622
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
623
Proof.
624
  induction l1.
625
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
626
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
627
Qed.
628
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
629
Proof. rewrite elem_of_app. tauto. Qed.
630
Lemma elem_of_list_singleton x y : x  [y]  x = y.
631
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
633
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
634
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
635
Proof.
636
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
637
  by exists (y :: l1), l2.
638
Qed.
639
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
640
Proof.
641
642
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
643
Qed.
644
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
645
Proof.
646
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
647
Qed.
648
649
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
650
651
652
653
654
655
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
656
657
  * intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
      simplify_equality; try constructor; auto.
658
Qed.
659

660
(** ** Properties of the [NoDup] predicate *)
661
662
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
663
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
664
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
665
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
666
Proof. rewrite NoDup_cons. by intros [??]. Qed.
667
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
668
Proof. rewrite NoDup_cons. by intros [??]. Qed.
669
Lemma NoDup_singleton x : NoDup [x].
670
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
671
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
672
Proof.
673
  induction l; simpl.
674
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
675
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
676
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
677
Qed.
678
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
679
680
681
682
683
684
685
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
686
687
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
688
689
690
691
692
693
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
694
695
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
696
Proof.
697
698
699
700
701
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
702
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
703

704
705
706
707
708
709
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
710
    | x :: l =>
711
712
713
714
715
716
717
718
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
719
    end.
720
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
721
722
723
724
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
725
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
726
727
728
729
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
730
End no_dup_dec.
731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

795
(** ** Properties of the [filter] function *)
796
797
798
799
800
801
802
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
803
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).