fin_maps.v 61.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78
79
80
81
82
83
84
85
86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
87

88
89
90
91
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
96

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
97
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
98
99
100
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

101
102
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
103
Instance map_difference `{Merge M} {A} : Difference (M A) :=
104
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
105

106
107
108
109
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

110
111
112
113
114
115
116
117
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
118
Global Instance: BoundedPreOrder (M A).
119
120
121
122
123
124
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
125
Global Instance : PartialOrder (@subseteq (M A) _).
126
Proof.
127
128
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
129
130
131
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
132
Proof. rewrite !map_subseteq_spec. auto. Qed.
133
134
135
136
137
138
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
139
140
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
141
142
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
143
144
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
145
146
147
148
149
150
151
152
153
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
154
155
156
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
157
158

(** ** Properties of the [partial_alter] operation *)
159
160
161
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
162
163
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
164
165
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
166
167
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
168
169
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
170
Qed.
171
Lemma partial_alter_commute {A} f g (m : M A) i j :
172
  i  j  partial_alter f i (partial_alter g j m) =
173
174
    partial_alter g j (partial_alter f i m).
Proof.
175
176
177
178
179
180
181
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
182
183
184
185
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
186
187
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
188
Qed.
189
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
190
Proof. by apply partial_alter_self_alt. Qed.
191
Lemma partial_alter_subseteq {A} f (m : M A) i :
192
  m !! i = None  m  partial_alter f i m.
193
194
195
196
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
197
Lemma partial_alter_subset {A} f (m : M A) i :
198
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
199
Proof.
200
201
202
203
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
204
205
206
Qed.

(** ** Properties of the [alter] operation *)
207
208
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
209
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
210
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
211
Proof. unfold alter. apply lookup_partial_alter. Qed.
212
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
213
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
214
215
216
217
218
219
220
221
222
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
223
224
225
226
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
227
  destruct (decide (i = j)) as [->|?].
228
229
230
231
232
233
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
234
235
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
236
Qed.
237
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
238
Proof.
239
240
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
241
242
243
244
245
246
247
248
249
250
251
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
252
  * destruct (decide (i = j)) as [->|?];
253
254
255
256
257
258
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
259
260
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
261
262
263
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
264
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
265
266
267
268
269
270
271
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
272
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
273
Proof.
274
275
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
293
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
294
295
296
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
297
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
298
  m1  m2  delete i m1  delete i m2.
299
300
301
302
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
303
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
304
Proof.
305
306
307
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
308
Qed.
309
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
310
311
312
313
314
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
315
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
316
Proof. rewrite lookup_insert. congruence. Qed.
317
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
318
319
320
321
322
323
324
325
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
326
  * destruct (decide (i = j)) as [->|?];
327
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
328
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
329
330
331
332
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
333
334
335
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
336
Qed.
337
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
338
Proof. apply partial_alter_subseteq. Qed.
339
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
340
341
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
342
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
343
Proof.
344
345
346
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
347
348
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
349
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
350
Proof.
351
352
353
354
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
355
356
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
357
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
358
Proof.
359
360
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
361
  * rewrite lookup_insert. congruence.
362
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
363
364
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
365
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
366
Proof.
367
368
369
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
370
371
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
372
  m1 !! i = None  <[i:=x]> m1  m2 
373
374
375
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
376
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
377
378
379
380
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
381
382
383
384
385
386
387
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
388
389
390

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
391
  {[i, x]} !! j = Some y  i = j  x = y.
392
393
Proof.
  unfold singleton, map_singleton.
394
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
395
Qed.
396
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
397
398
399
400
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
401
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
402
Proof. by rewrite lookup_singleton_Some. Qed.
403
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
404
Proof. by rewrite lookup_singleton_None. Qed.
405
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
406
407
408
409
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
410
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
411
412
413
414
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
415
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
416
Proof.
417
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
418
419
420
421
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
422
  i  j  alter f i {[j,x]} = {[j,x]}.
423
Proof.
424
425
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
426
427
Qed.

428
429
430
431
432
433
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

434
435
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
436
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
437
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
438
439
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
440
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
441
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
442
Proof.
443
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
444
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
445
446
447
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
448
449
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
450
  map_of_list l !! i = Some x  (i,x)  l.
451
Proof.
452
453
454
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
455
456
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
457
458
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
459
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
460
  i  fst <$> l  map_of_list l !! i = None.
461
Proof.
462
463
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
464
465
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
466
  map_of_list l !! i = None  i  fst <$> l.
467
Proof.
468
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
469
470
471
472
473
474
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
475
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
476
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
477
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
478
479
480
481
482
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
483
484
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
485
Proof.
486
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
487
488
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
489
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
490
491
492
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
493
    by auto using NoDup_fst_map_to_list.
494
495
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
496
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
497
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
498
Lemma map_to_list_inj {A} (m1 m2 : M A) :
499
  map_to_list m1  map_to_list m2  m1 = m2.
500
Proof.
501
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
502
  auto using map_of_list_proper, NoDup_fst_map_to_list.
503
Qed.
504
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
505
506
507
508
509
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
510
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
511
Proof.
512
  intros. apply map_of_list_inj; csimpl.
513
514
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
515
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
516
517
518
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
519
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
520
521
522
523
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
524
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
525
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
526
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
527
528
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
529
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
530
531
532
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
533
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
534
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
535
536
537
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
538
539
540
541
542
543
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
544

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
562
Lemma map_ind {A} (P : M A  Prop) :
563
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
564
Proof.
565
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
566
  { intros help m.
567
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
568
569
570
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
571
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
572
573
574
575
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
576
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
577
578
579
580
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
581
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
582
583
584
585
586
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
587
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
588
589
590
591
592
593
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

594
(** ** Properties of the [map_Forall] predicate *)
595
Section map_Forall.
596
597
Context {A} (P : K  A  Prop).

598
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
599
600
Proof.
  rewrite Forall_forall. split.
601
602
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
603
604
605
Qed.

Context `{ i x, Decision (P i x)}.
606
Global Instance map_Forall_dec m : Decision (map_Forall P m).
607
608
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
609
    by rewrite map_Forall_to_list.
610
Defined.
611
612
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
613
614
Proof.
  split.
615
  * rewrite map_Forall_to_list. intros Hm.
616
617
618
619
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
620
End map_Forall.
621
622
623
624
625
626

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
627
628
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
629
630
631
632
633
634
635
636
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
637
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
638
639
640
641
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
642
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
662
  intros ????. apply merge_associative. intros. by apply (associative_L f).
663
664
Qed.
Lemma merge_idempotent m1 :
665
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
666
667
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
668
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

712
713
714
715
716
717
718
719
720
721
722
723
724
725
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
726
727
Proof.
  split.
728
729
730
731
732
733
734
735
736
737
738
739
740
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
      simplify_equality; auto using bool_decide_pack.
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
741
742
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
743
744
745
746
747
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
748
749
Proof.
  split.
750
751
752
753
754
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
755
Qed.
756
End Forall2.
757
758

(** ** Properties on the disjoint maps *)
759
760
761
762
763
764
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
765
766
767
768
769
770
771
772
773
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
774
775
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
776
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
777
778
Qed.
Global Instance: Symmetric (@disjoint (M A) _).
779
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
780
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
781
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
782
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
783
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
784
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
Robbert Krebbers's avatar