fin_maps.v 62.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78
79
80
81
82
83
84
85
86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
90
91
92
93
Definition map_Forall3 `{ A, Lookup K A (M A)} {A B C}
    (R : A  B  C  Prop) (m1 : M A) (m2 : M B) (m3 : M C): Prop :=  i,
  match m1 !! i, m2 !! i, m3 !! i with
  | Some x, Some y, Some z => R x y z
  | None, None, None => True
  | _, _, _ => False
  end.
94

95
96
97
98
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105
106
107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108
109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
115
116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

117
118
119
120
121
122
123
124
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
125
Global Instance: EmptySpec (M A).
126
Proof.
127
128
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
129
Qed.
130
Global Instance: PartialOrder (() : relation (M A)).
131
Proof.
132
133
134
135
136
  repeat split.
  * intros m; rewrite !map_subseteq_spec; naive_solver.
  * intros m1 m2 m3; rewrite !map_subseteq_spec; naive_solver.
  * intros m1 m2; rewrite !map_subseteq_spec.
    intros; apply map_eq; intros i; apply option_eq; naive_solver.
137
138
139
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
140
Proof. rewrite !map_subseteq_spec. auto. Qed.
141
142
143
144
145
146
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
147
148
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
149
150
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
151
152
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
153
154
155
156
157
158
159
160
161
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
162
163
164
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
165
166

(** ** Properties of the [partial_alter] operation *)
167
168
169
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
170
171
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
172
173
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
174
175
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
176
177
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
178
Qed.
179
Lemma partial_alter_commute {A} f g (m : M A) i j :
180
  i  j  partial_alter f i (partial_alter g j m) =
181
182
    partial_alter g j (partial_alter f i m).
Proof.
183
184
185
186
187
188
189
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
190
191
192
193
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
194
195
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
196
Qed.
197
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
198
Proof. by apply partial_alter_self_alt. Qed.
199
Lemma partial_alter_subseteq {A} f (m : M A) i :
200
  m !! i = None  m  partial_alter f i m.
201
202
203
204
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
205
Lemma partial_alter_subset {A} f (m : M A) i :
206
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
207
Proof.
208
209
210
211
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
212
213
214
Qed.

(** ** Properties of the [alter] operation *)
215
216
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
217
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
218
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
219
Proof. unfold alter. apply lookup_partial_alter. Qed.
220
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
221
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
222
223
224
225
226
227
228
229
230
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
231
232
233
234
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
235
  destruct (decide (i = j)) as [->|?].
236
237
238
239
240
241
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
242
243
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
244
Qed.
245
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
246
Proof.
247
248
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
249
250
251
252
253
254
255
256
257
258
259
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
260
  * destruct (decide (i = j)) as [->|?];
261
262
263
264
265
266
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
267
268
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
269
270
271
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
272
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
273
274
275
276
277
278
279
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
280
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
281
Proof.
282
283
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
301
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
302
303
304
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
305
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
306
  m1  m2  delete i m1  delete i m2.
307
308
309
310
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
311
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
312
Proof.
313
314
315
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
316
Qed.
317
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
318
319
320
321
322
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
323
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
324
Proof. rewrite lookup_insert. congruence. Qed.
325
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
326
327
328
329
330
331
332
333
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
334
  * destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
336
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
337
338
339
340
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
341
342
343
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
344
Qed.
345
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
346
Proof. apply partial_alter_subseteq. Qed.
347
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
348
349
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
350
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
351
Proof.
352
353
354
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
355
356
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
357
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
358
Proof.
359
360
361
362
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
363
364
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
365
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
366
Proof.
367
368
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
369
  * rewrite lookup_insert. congruence.
370
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
371
372
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
373
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
374
Proof.
375
376
377
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
378
379
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
380
  m1 !! i = None  <[i:=x]> m1  m2 
381
382
383
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
384
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
385
386
387
388
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
389
390
391
392
393
394
395
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
396
397
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
398
399
400

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
401
  {[i, x]} !! j = Some y  i = j  x = y.
402
403
Proof.
  unfold singleton, map_singleton.
404
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
405
Qed.
406
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
407
408
409
410
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
411
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
412
Proof. by rewrite lookup_singleton_Some. Qed.
413
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
414
Proof. by rewrite lookup_singleton_None. Qed.
415
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
416
417
418
419
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
420
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
421
422
423
424
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
425
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
426
Proof.
427
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
428
429
430
431
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
432
  i  j  alter f i {[j,x]} = {[j,x]}.
433
Proof.
434
435
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
436
437
Qed.

438
439
440
441
442
443
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

444
445
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
446
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
447
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
448
449
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
450
451
452
453
454
455
456
457
458
459
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
460
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
461
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
462
Proof.
463
464
465
466
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (fst <$> l) i;
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
467
468
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
469
  map_of_list l !! i = Some x  (i,x)  l.
470
Proof.
471
472
473
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
474
475
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
476
477
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
478
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
479
  i  fst <$> l  map_of_list l !! i = None.
480
Proof.
481
482
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
483
484
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
485
  map_of_list l !! i = None  i  fst <$> l.
486
Proof.
487
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
488
489
490
491
492
493
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
494
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
495
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
496
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
497
498
499
500
501
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
502
503
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
504
Proof.
505
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
506
507
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
508
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
509
510
511
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
512
    by auto using NoDup_fst_map_to_list.
513
514
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
515
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
516
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
517
Lemma map_to_list_inj {A} (m1 m2 : M A) :
518
  map_to_list m1  map_to_list m2  m1 = m2.
519
Proof.
520
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
521
  auto using map_of_list_proper, NoDup_fst_map_to_list.
522
Qed.
523
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
524
525
526
527
528
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
529
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
530
Proof.
531
  intros. apply map_of_list_inj; csimpl.
532
533
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
534
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
535
536
537
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
538
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
539
540
541
542
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
543
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
544
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
545
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
546
547
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
548
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
549
550
551
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
552
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
553
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
554
555
556
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
557
558
559
560
561
562
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
581
Lemma map_ind {A} (P : M A  Prop) :
582
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
583
Proof.
584
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
585
  { intros help m.
586
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
587
588
589
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
590
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
591
592
593
594
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
595
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
596
597
598
599
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
600
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
601
602
603
604
605
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
606
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
607
608
609
610
611
612
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

613
(** ** Properties of the [map_Forall] predicate *)
614
Section map_Forall.
615
616
Context {A} (P : K  A  Prop).

617
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
618
619
Proof.
  rewrite Forall_forall. split.
620
621
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
622
623
624
Qed.

Context `{ i x, Decision (P i x)}.
625
Global Instance map_Forall_dec m : Decision (map_Forall P m).
626
627
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
628
    by rewrite map_Forall_to_list.
629
Defined.
630
631
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
632
633
Proof.
  split.
634
  * rewrite map_Forall_to_list. intros Hm.
635
636
637
638
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
639
End map_Forall.
640
641
642
643

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).
644
Context `{!PropHolds (f None None = None)}.
645
646
647
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
648
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
649
650
651
652
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
653
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
Qed.
Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
670
  intros ????. apply merge_associative. intros. by apply (associative_L f).
671
672
Qed.
Lemma merge_idempotent m1 :
673
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
674
675
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
676
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
677
End merge.
678

679
680
681
682
683
684
685
686
687
688
689
690
Section more_merge.
Context {A B C} (f : option A  option B  option C).
Context `{!PropHolds (f None None = None)}.
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
691
692
693
694
695
696
697
698
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
699
Lemma partial_alter_merge_l g g1 m1 m2 i :
700
701
702
703
704
705
706
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
707
Lemma partial_alter_merge_r g g2 m1 m2 i :
708
709
710
711
712
713
714
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
Lemma insert_merge m1 m2 i x y z :
  f (Some y) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
  f (Some y) (Some z) = Some x  merge f {[i,y]} {[i,z]} = {[i,x]}.
Proof.
  intros. unfold singleton, map_singleton; simpl.
  by erewrite <-insert_merge, merge_empty by eauto.
Qed.
Lemma insert_merge_l m1 m2 i x y :
  f (Some y) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r m1 m2 i x z :
  f (m1 !! i) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge_r. Qed.
End more_merge.
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
749
750
Proof.
  split.
751
752
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
753
      simplify_equality'; auto using bool_decide_pack.
754
755
756
757
758
759
760
761
762
763
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
764
765
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
766
767
768
769
770
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
771
772
Proof.
  split.
773
774
775
776
777
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
778
Qed.