fin_maps.v 48.4 KB
Newer Older
1
2
3
4
5
6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic [simplify_map]
to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Require Export prelude.
9
10
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
11
12
13
14
15
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
16

Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
implement the [dom] function, and for well founded recursion on finite maps. *)
20

21
22
23
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
24

Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
Class FinMapToList K A M := finmap_to_list: M  list (K * A).

27
Class FinMap K M `{!FMap M}
Robbert Krebbers's avatar
Robbert Krebbers committed
28
29
30
31
32
    `{ A, Lookup K A (M A)}
    `{ A, Empty (M A)}
    `{ A, PartialAlter K A (M A)}
    `{ A, Merge A (M A)}
    `{ A, FinMapToList K A (M A)}
33
    `{ i j : K, Decision (i = j)} := {
34
35
36
37
38
39
40
41
42
43
  finmap_eq {A} (m1 m2 : M A) :
    ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i :
    ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i :
    (f <$> m) !! i = f <$> m !! i;
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
46
47
  finmap_to_list_nodup {A} (m : M A) :
    NoDup (finmap_to_list m);
  elem_of_finmap_to_list {A} (m : M A) i x :
    (i,x)  finmap_to_list m  m !! i = Some x;
48
  merge_spec {A} f `{!PropHolds (f None None = None)}
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
    (m1 m2 : M A) i : merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

52
53
54
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
55
56
significant performance loss to make including them in the finite map interface
worthwhile. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
57
Instance finmap_insert `{PartialAlter K A M} : Insert K A M := λ i x,
58
  partial_alter (λ _, Some x) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Instance finmap_alter `{PartialAlter K A M} : Alter K A M := λ f,
60
  partial_alter (fmap f).
Robbert Krebbers's avatar
Robbert Krebbers committed
61
Instance finmap_delete `{PartialAlter K A M} : Delete K M :=
62
  partial_alter (λ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Instance finmap_singleton `{PartialAlter K A M}
64
  `{Empty M} : Singleton (K * A) M := λ p, <[fst p:=snd p]>.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
66

Definition finmap_of_list `{Insert K A M} `{Empty M}
67
  (l : list (K * A)) : M := insert_list l .
Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
Instance finmap_dom `{FinMapToList K A M} : Dom K M := λ C _ _ _,
  foldr (()  singleton  fst)   finmap_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
70

Robbert Krebbers's avatar
Robbert Krebbers committed
71
Instance finmap_union_with `{Merge A M} : UnionWith A M := λ f,
72
  merge (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Instance finmap_intersection_with `{Merge A M} : IntersectionWith A M := λ f,
74
  merge (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Instance finmap_difference_with `{Merge A M} : DifferenceWith A M := λ f,
76
  merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
82
83
84
85
86
Definition finmap_forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
  λ m,  i x, m !! i = Some x  P i x.
Definition finmap_intersection_forall `{Lookup K A M}
    (R : relation A) : relation M := λ m1 m2,
   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  R x1 x2.
Instance finmap_disjoint `{ A, Lookup K A (M A)} : Disjoint (M A) := λ A,
  finmap_intersection_forall (λ _ _, False).
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
90
91

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
Instance finmap_union `{Merge A M} : Union M :=
  union_with (λ x _, Some x).
Instance finmap_intersection `{Merge A M} : Intersection M :=
  union_with (λ x _, Some x).
96
97
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98
Instance finmap_difference `{Merge A M} : Difference M :=
99
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
100

101
(** * General theorems *)
102
103
104
105
106
107
108
109
110
111
112
Section finmap_common.
  Context `{FinMap K M} {A : Type}.

  Global Instance finmap_subseteq: SubsetEq (M A) := λ m n,
     i x, m !! i = Some x  n !! i = Some x.
  Global Instance: BoundedPreOrder (M A).
  Proof. split; [firstorder |]. intros m i x. by rewrite lookup_empty. Qed.

  Lemma lookup_weaken (m1 m2 : M A) i x :
    m1 !! i = Some x  m1  m2  m2 !! i = Some x.
  Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
115
  Lemma lookup_weaken_is_Some (m1 m2 : M A) i :
    is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
  Proof. inversion 1. eauto using lookup_weaken. Qed.
116
117
118
119
120
121
122
123
  Lemma lookup_weaken_None (m1 m2 : M A) i :
    m2 !! i = None  m1  m2  m1 !! i = None.
  Proof.
    rewrite eq_None_not_Some. intros Hm2 Hm1m2.
    specialize (Hm1m2 i). destruct (m1 !! i); naive_solver.
  Qed.

  Lemma lookup_weaken_inv (m1 m2 : M A) i x y :
124
    m1 !! i = Some x 
125
    m1  m2 
126
    m2 !! i = Some y 
127
128
129
130
131
132
133
134
135
136
    x = y.
  Proof.
    intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto.
    congruence.
  Qed.

  Lemma lookup_ne (m : M A) i j : m !! i  m !! j  i  j.
  Proof. congruence. Qed.
  Lemma finmap_empty (m : M A) : ( i, m !! i = None)  m = .
  Proof. intros Hm. apply finmap_eq. intros. by rewrite Hm, lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
  Lemma lookup_empty_is_Some i : ¬is_Some (( : M A) !! i).
138
139
140
141
142
143
  Proof. rewrite lookup_empty. by inversion 1. Qed.
  Lemma lookup_empty_Some i (x : A) : ¬ !! i = Some x.
  Proof. by rewrite lookup_empty. Qed.

  Lemma partial_alter_compose (m : M A) i f g :
    partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Robbert Krebbers's avatar
Robbert Krebbers committed
144
  Proof.
145
146
147
    intros. apply finmap_eq. intros ii. case (decide (i = ii)).
    * intros. subst. by rewrite !lookup_partial_alter.
    * intros. by rewrite !lookup_partial_alter_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
  Qed.
149
150
  Lemma partial_alter_comm (m : M A) i j f g :
    i  j 
151
152
    partial_alter f i (partial_alter g j m) =
      partial_alter g j (partial_alter f i m).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Proof.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    intros. apply finmap_eq. intros jj.
    destruct (decide (jj = j)).
    * subst. by rewrite lookup_partial_alter_ne,
       !lookup_partial_alter, lookup_partial_alter_ne.
    * destruct (decide (jj = i)).
      + subst. by rewrite lookup_partial_alter,
         !lookup_partial_alter_ne, lookup_partial_alter by congruence.
      + by rewrite !lookup_partial_alter_ne by congruence.
  Qed.
  Lemma partial_alter_self_alt (m : M A) i x :
    x = m !! i  partial_alter (λ _, x) i m = m.
  Proof.
    intros. apply finmap_eq. intros ii.
    destruct (decide (i = ii)).
    * subst. by rewrite lookup_partial_alter.
    * by rewrite lookup_partial_alter_ne.
  Qed.
  Lemma partial_alter_self (m : M A) i : partial_alter (λ _, m !! i) i m = m.
  Proof. by apply partial_alter_self_alt. Qed.

  Lemma lookup_insert (m : M A) i x : <[i:=x]>m !! i = Some x.
  Proof. unfold insert. apply lookup_partial_alter. Qed.
  Lemma lookup_insert_rev (m : M A) i x y : <[i:= x ]>m !! i = Some y  x = y.
  Proof. rewrite lookup_insert. congruence. Qed.
  Lemma lookup_insert_ne (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
  Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
  Lemma insert_comm (m : M A) i j x y :
    i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
  Proof. apply partial_alter_comm. Qed.

  Lemma lookup_insert_Some (m : M A) i j x y :
    <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
    * intros [[??]|[??]].
      + subst. apply lookup_insert.
      + by rewrite lookup_insert_ne.
  Qed.
  Lemma lookup_insert_None (m : M A) i j x :
    <[i:=x]>m !! j = None  m !! j = None  i  j.
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
    * intros [??]. by rewrite lookup_insert_ne.
  Qed.

  Lemma lookup_singleton_Some i j (x y : A) :
    {[(i, x)]} !! j = Some y  i = j  x = y.
  Proof.
    unfold singleton, finmap_singleton.
    rewrite lookup_insert_Some, lookup_empty. simpl.
    intuition congruence.
  Qed.
  Lemma lookup_singleton_None i j (x : A) :
    {[(i, x)]} !! j = None  i  j.
  Proof.
    unfold singleton, finmap_singleton.
    rewrite lookup_insert_None, lookup_empty. simpl. tauto.
  Qed.
  Lemma insert_singleton i (x y : A) : <[i:=y]>{[(i, x)]} = {[(i, y)]}.
  Proof.
    unfold singleton, finmap_singleton, insert, finmap_insert.
    by rewrite <-partial_alter_compose.
  Qed.

  Lemma lookup_singleton i (x : A) : {[(i, x)]} !! i = Some x.
  Proof. by rewrite lookup_singleton_Some. Qed.
  Lemma lookup_singleton_ne i j (x : A) : i  j  {[(i, x)]} !! j = None.
  Proof. by rewrite lookup_singleton_None. Qed.

  Lemma lookup_delete (m : M A) i : delete i m !! i = None.
  Proof. apply lookup_partial_alter. Qed.
  Lemma lookup_delete_ne (m : M A) i j : i  j  delete i m !! j = m !! j.
  Proof. apply lookup_partial_alter_ne. Qed.

  Lemma lookup_delete_Some (m : M A) i j y :
    delete i m !! j = Some y  i  j  m !! j = Some y.
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
    * intros [??]. by rewrite lookup_delete_ne.
  Qed.
  Lemma lookup_delete_None (m : M A) i j :
    delete i m !! j = None  i = j  m !! j = None.
  Proof.
    destruct (decide (i = j)).
    * subst. rewrite lookup_delete. tauto.
    * rewrite lookup_delete_ne; tauto.
  Qed.

  Lemma delete_empty i : delete i ( : M A) = .
  Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
  Lemma delete_singleton i (x : A) : delete i {[(i, x)]} = .
  Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
  Lemma delete_comm (m : M A) i j :
    delete i (delete j m) = delete j (delete i m).
  Proof. destruct (decide (i = j)). by subst. by apply partial_alter_comm. Qed.
  Lemma delete_insert_comm (m : M A) i j x :
    i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
  Proof. intro. by apply partial_alter_comm. Qed.

  Lemma delete_notin (m : M A) i :
    m !! i = None  delete i m = m.
  Proof.
    intros. apply finmap_eq. intros j.
    destruct (decide (i = j)).
    * subst. by rewrite lookup_delete.
    * by apply lookup_delete_ne.
  Qed.

  Lemma delete_partial_alter (m : M A) i f :
    m !! i = None  delete i (partial_alter f i m) = m.
  Proof.
    intros. unfold delete, finmap_delete. rewrite <-partial_alter_compose.
    rapply partial_alter_self_alt. congruence.
  Qed.
  Lemma delete_insert (m : M A) i x :
    m !! i = None  delete i (<[i:=x]>m) = m.
  Proof. apply delete_partial_alter. Qed.
  Lemma insert_delete (m : M A) i x :
    m !! i = Some x  <[i:=x]>(delete i m) = m.
  Proof.
    intros Hmi. unfold delete, finmap_delete, insert, finmap_insert.
    rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
    by apply partial_alter_self_alt.
  Qed.

  Lemma lookup_delete_list (m : M A) is j :
    j  is  delete_list is m !! j = None.
  Proof.
    induction 1 as [|i j is]; simpl.
    * by rewrite lookup_delete.
    * destruct (decide (i = j)).
      + subst. by rewrite lookup_delete.
      + rewrite lookup_delete_ne; auto.
  Qed.
  Lemma lookup_delete_list_not_elem_of (m : M A) is j :
    j  is  delete_list is m !! j = m !! j.
  Proof.
    induction is; simpl; [done |].
    rewrite elem_of_cons. intros.
    intros. rewrite lookup_delete_ne; intuition.
  Qed.
  Lemma delete_list_notin (m : M A) is :
    Forall (λ i, m !! i = None) is  delete_list is m = m.
  Proof.
    induction 1; simpl; [done |].
    rewrite delete_notin; congruence.
  Qed.

  Lemma delete_list_insert_comm (m : M A) is j x :
    j  is  delete_list is (<[j:=x]>m) = <[j:=x]>(delete_list is m).
  Proof.
    induction is; simpl; [done |].
    rewrite elem_of_cons. intros.
    rewrite IHis, delete_insert_comm; intuition.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
  Lemma elem_of_dom C `{SimpleCollection K C} (m : M A) i :
    i  dom C m  is_Some (m !! i).
  Proof.
    unfold dom, finmap_dom. simpl. rewrite is_Some_alt.
    setoid_rewrite <-elem_of_finmap_to_list.
    induction (finmap_to_list m) as [|[j x] l IH]; simpl.
    * rewrite elem_of_empty.
      setoid_rewrite elem_of_nil. naive_solver.
    * rewrite elem_of_union, elem_of_singleton.
      setoid_rewrite elem_of_cons. naive_solver.
  Qed.
  Lemma not_elem_of_dom C `{SimpleCollection K C} (m : M A) i :
    i  dom C m  m !! i = None.
  Proof. by rewrite (elem_of_dom C), eq_None_not_Some. Qed.

  Lemma dom_empty C `{SimpleCollection K C} : dom C ( : M A)  .
  Proof.
    split; intro.
    * rewrite (elem_of_dom C), lookup_empty. by inversion 1.
    * solve_elem_of.
  Qed.
337
338
  Lemma dom_empty_inv C `{SimpleCollection K C} (m : M A) :
    dom C m    m = .
Robbert Krebbers's avatar
Robbert Krebbers committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  Proof.
    intros E. apply finmap_empty. intros. apply (not_elem_of_dom C).
    rewrite E. solve_elem_of.
  Qed.

  Lemma delete_partial_alter_dom C `{SimpleCollection K C} (m : M A) i f :
    i  dom C m  delete i (partial_alter f i m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma delete_insert_dom C `{SimpleCollection K C} (m : M A) i x :
    i  dom C m  delete i (<[i:=x]>m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma elem_of_dom_delete C `{SimpleCollection K C} (m : M A) i j :
    i  dom C (delete j m)  i  j  i  dom C m.
  Proof.
    rewrite !(elem_of_dom C), <-!not_eq_None_Some.
    rewrite lookup_delete_None. intuition.
  Qed.
  Lemma not_elem_of_dom_delete C `{SimpleCollection K C} (m : M A) i :
    i  dom C (delete i m).
  Proof. apply (not_elem_of_dom C), lookup_delete. Qed.

  Lemma subseteq_dom C `{SimpleCollection K C} (m1 m2 : M A) :
    m1  m2  dom C m1  dom C m2.
  Proof.
    unfold subseteq, finmap_subseteq, collection_subseteq.
    intros ??. rewrite !(elem_of_dom C). inversion 1. eauto.
  Qed.
  Lemma subset_dom C `{SimpleCollection K C} (m1 m2 : M A) :
    m1  m2  dom C m1  dom C m2.
  Proof.
    intros [Hss1 Hss2]. split.
    * by apply subseteq_dom.
    * intros Hdom. destruct Hss2. intros i x Hi.
      specialize (Hdom i). rewrite !(elem_of_dom C) in Hdom.
      feed inversion Hdom. eauto.
      by erewrite (Hss1 i) in Hi by eauto.
  Qed.
  Lemma finmap_wf : wf (@subset (M A) _).
  Proof.
    apply (wf_projected () (dom (listset K))).
    * by apply (subset_dom _).
    * by apply collection_wf.
  Qed.

  Lemma partial_alter_subseteq (m : M A) i f :
    m !! i = None 
    m  partial_alter f i m.
  Proof.
    intros Hi j x Hj. rewrite lookup_partial_alter_ne; congruence.
  Qed.
  Lemma partial_alter_subset (m : M A) i f :
    m !! i = None 
    is_Some (f (m !! i)) 
    m  partial_alter f i m.
  Proof.
    intros Hi Hfi. split.
    * by apply partial_alter_subseteq.
    * inversion Hfi as [x Hx]. intros Hm.
      apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
      by rewrite lookup_partial_alter.
  Qed.
  Lemma insert_subseteq (m : M A) i x :
    m !! i = None 
    m  <[i:=x]>m.
  Proof. apply partial_alter_subseteq. Qed.
  Lemma insert_subset (m : M A) i x :
    m !! i = None 
    m  <[i:=x]>m.
  Proof. intro. apply partial_alter_subset; eauto. Qed.

  Lemma delete_subseteq (m : M A) i :
    delete i m  m.
  Proof. intros j x. rewrite lookup_delete_Some. tauto. Qed.
  Lemma delete_subseteq_compat (m1 m2 : M A) i :
    m1  m2 
    delete i m1  delete i m2.
  Proof. intros ? j x. rewrite !lookup_delete_Some. intuition eauto. Qed.
  Lemma delete_subset_alt (m : M A) i x :
    m !! i = Some x  delete i m  m.
  Proof.
    split.
    * apply delete_subseteq.
    * intros Hi. apply (None_ne_Some x).
      by rewrite <-(lookup_delete m i), (Hi i x).
  Qed.
  Lemma delete_subset (m : M A) i :
    is_Some (m !! i)  delete i m  m.
  Proof. inversion 1. eauto using delete_subset_alt. Qed.

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
  (** * Induction principles *)
  (** We use the induction principle on finite collections to prove the
  following induction principle on finite maps. *)
  Lemma finmap_ind_alt C (P : M A  Prop) `{FinCollection K C} :
    P  
    ( i x m, i  dom C m  P m  P (<[i:=x]>m)) 
     m, P m.
  Proof.
    intros Hemp Hinsert m.
    apply (collection_ind (λ X,  m, dom C m  X  P m)) with (dom C m).
    * solve_proper.
    * clear m. intros m Hm. rewrite finmap_empty.
      + done.
      + intros. rewrite <-(not_elem_of_dom C), Hm.
        by solve_elem_of.
    * clear m. intros i X Hi IH m Hdom.
      assert ( x, m !! i = Some x) as [x ?].
      { apply is_Some_alt, (elem_of_dom C).
        rewrite Hdom. clear Hdom.
        by solve_elem_of. }
      rewrite <-(insert_delete m i x) by done.
      apply Hinsert.
      { by apply (not_elem_of_dom_delete C). }
      apply IH. apply elem_of_equiv. intros.
      rewrite (elem_of_dom_delete C).
      esolve_elem_of.
    * done.
  Qed.

  (** We use the [listset] implementation to prove an induction principle that
  does not use the map's domain. *)
  Lemma finmap_ind (P : M A  Prop) :
    P  
    ( i x m, m !! i = None  P m  P (<[i:=x]>m)) 
     m, P m.
  Proof.
    setoid_rewrite <-(not_elem_of_dom (listset _)).
    apply (finmap_ind_alt (listset _) P).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
  Qed.
467
End finmap_common.
468

469
470
(** * The finite map tactic *)
(** The tactic [simplify_map by tac] simplifies finite map expressions
471
occuring in the conclusion and hypotheses. It uses [tac] to discharge generated
472
inequalities. *)
473
Tactic Notation "simpl_map" "by" tactic3(tac) := repeat
474
475
476
  match goal with
  | H : context[  !! _ ] |- _ => rewrite lookup_empty in H
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert in H
477
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert_ne in H by tac
478
479
  | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete in H
  | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete_ne in H by tac
480
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton in H
481
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton_ne in H by tac
482
483
  | |- context[  !! _ ] => rewrite lookup_empty
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert
484
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert_ne by tac
485
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete
486
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete_ne by tac
487
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton
488
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton_ne by tac
489
490
491
492
493
494
  | |- context [ lookup (A:=?A) ?i ?m ] =>
     let x := fresh in evar (x:A);
     let x' := eval unfold x in x in clear x;
     let E := fresh in
     assert (m !! i = Some x') as E by tac;
     rewrite E; clear E
495
  end.
496
497
498

Create HintDb simpl_map.
Tactic Notation "simpl_map" := simpl_map by eauto with simpl_map.
499

500
501
502
503
Tactic Notation "simplify_map_equality" "by" tactic3(tac) := repeat
  match goal with
  | _ => progress simpl_map by tac
  | _ => progress simplify_equality
504
505
506
  | H : {[ _ ]} !! _ = None |- _ => rewrite lookup_singleton_None in H
  | H : {[ _ ]} !! _ = Some _ |- _ =>
     rewrite lookup_singleton_Some in H; destruct H
507
508
509
510
511
  | H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = Some ?y |- _ =>
    let H3 := fresh in
    feed pose proof (lookup_weaken_inv m1 m2 i x y) as H3;
      [done | by tac | done | ];
    clear H2; symmetry in H3
Robbert Krebbers's avatar
Robbert Krebbers committed
512
513
514
515
  | H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = None |- _ =>
    let H3 := fresh in
    assert (m1  m2) as H3 by tac;
    apply H3 in H1; congruence
516
  end.
517
518
Tactic Notation "simplify_map_equality" :=
  simplify_map_equality by eauto with simpl_map.
519

Robbert Krebbers's avatar
Robbert Krebbers committed
520
(** * More theorems on finite maps *)
521
522
523
Section finmap_more.
  Context `{FinMap K M} {A : Type}.

Robbert Krebbers's avatar
Robbert Krebbers committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  (** ** Properties of conversion to lists *)
  Lemma finmap_to_list_unique (m : M A) i x y :
    (i,x)  finmap_to_list m 
    (i,y)  finmap_to_list m 
    x = y.
  Proof. rewrite !elem_of_finmap_to_list. congruence. Qed.
  Lemma finmap_to_list_key_nodup (m : M A) :
    NoDup (fst <$> finmap_to_list m).
  Proof.
    eauto using NoDup_fmap_fst, finmap_to_list_unique, finmap_to_list_nodup.
  Qed.

  Lemma elem_of_finmap_of_list_1 (l : list (K * A)) i x :
    NoDup (fst <$> l)  (i,x)  l  finmap_of_list l !! i = Some x.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * by rewrite elem_of_nil.
    * rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
      intros [Hl ?] [?|?]; simplify_map_equality; [done |].
543
      destruct (decide (i = j)); simplify_map_equality; [|done].
Robbert Krebbers's avatar
Robbert Krebbers committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
      destruct Hl. by exists (j,x).
  Qed.
  Lemma elem_of_finmap_of_list_2 (l : list (K * A)) i x :
    finmap_of_list l !! i = Some x  (i,x)  l.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * by rewrite lookup_empty.
    * rewrite elem_of_cons. destruct (decide (i = j));
        simplify_map_equality; intuition congruence.
  Qed.
  Lemma elem_of_finmap_of_list (l : list (K * A)) i x :
    NoDup (fst <$> l) 
    (i,x)  l  finmap_of_list l !! i = Some x.
  Proof.
    split; auto using elem_of_finmap_of_list_1, elem_of_finmap_of_list_2.
  Qed.

  Lemma not_elem_of_finmap_of_list_1 (l : list (K * A)) i :
    i  fst <$> l  finmap_of_list l !! i = None.
  Proof.
    rewrite elem_of_list_fmap, eq_None_not_Some, is_Some_alt.
    intros Hi [x ?]. destruct Hi. exists (i,x). simpl.
    auto using elem_of_finmap_of_list_2.
  Qed.
  Lemma not_elem_of_finmap_of_list_2 (l : list (K * A)) i :
    finmap_of_list l !! i = None  i  fst <$> l.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * rewrite elem_of_nil. tauto.
    * rewrite elem_of_cons.
      destruct (decide (i = j)); simplify_map_equality; by intuition.
  Qed.
  Lemma not_elem_of_finmap_of_list (l : list (K * A)) i :
    i  fst <$> l  finmap_of_list l !! i = None.
  Proof.
    split; auto using not_elem_of_finmap_of_list_1,
      not_elem_of_finmap_of_list_2.
  Qed.

  Lemma finmap_of_list_proper (l1 l2 : list (K * A)) :
    NoDup (fst <$> l1) 
    Permutation l1 l2 
    finmap_of_list l1 = finmap_of_list l2.
  Proof.
    intros ? Hperm. apply finmap_eq. intros i. apply option_eq. intros x.
    by rewrite <-!elem_of_finmap_of_list; rewrite <-?Hperm.
  Qed.
  Lemma finmap_of_list_inj (l1 l2 : list (K * A)) :
    NoDup (fst <$> l1) 
    NoDup (fst <$> l2) 
    finmap_of_list l1 = finmap_of_list l2 
    Permutation l1 l2.
  Proof.
    intros ?? Hl1l2.
    apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
    intros [i x]. by rewrite !elem_of_finmap_of_list, Hl1l2.
  Qed.
  Lemma finmap_of_to_list (m : M A) :
    finmap_of_list (finmap_to_list m) = m.
  Proof.
    apply finmap_eq. intros i. apply option_eq. intros x.
    by rewrite <-elem_of_finmap_of_list, elem_of_finmap_to_list
      by auto using finmap_to_list_key_nodup.
  Qed.
  Lemma finmap_to_of_list (l : list (K * A)) :
    NoDup (fst <$> l) 
    Permutation (finmap_to_list (finmap_of_list l)) l.
  Proof.
    auto using finmap_of_list_inj,
      finmap_to_list_key_nodup, finmap_of_to_list.
  Qed.
  Lemma finmap_to_list_inj (m1 m2 : M A) :
    Permutation (finmap_to_list m1) (finmap_to_list m2) 
    m1 = m2.
  Proof.
    intros.
    rewrite <-(finmap_of_to_list m1), <-(finmap_of_to_list m2).
    auto using finmap_of_list_proper, finmap_to_list_key_nodup.
  Qed.

  Lemma finmap_to_list_empty :
    finmap_to_list  = @nil (K * A).
  Proof.
    apply elem_of_nil_inv. intros [i x].
    rewrite elem_of_finmap_to_list. apply lookup_empty_Some.
  Qed.
  Lemma finmap_to_list_insert (m : M A) i x :
    m !! i = None 
    Permutation (finmap_to_list (<[i:=x]>m)) ((i,x) :: finmap_to_list m).
  Proof.
    intros. apply finmap_of_list_inj; simpl.
    * apply finmap_to_list_key_nodup.
    * constructor; auto using finmap_to_list_key_nodup.
      rewrite elem_of_list_fmap.
      intros [[??] [? Hlookup]]; subst; simpl in *.
      rewrite elem_of_finmap_to_list in Hlookup. congruence.
    * by rewrite !finmap_of_to_list.
  Qed.

  Lemma finmap_of_list_nil :
    finmap_of_list (@nil (K * A)) = .
  Proof. done. Qed.
  Lemma finmap_of_list_cons (l : list (K * A)) i x :
    finmap_of_list ((i, x) :: l) = <[i:=x]>(finmap_of_list l).
  Proof. done. Qed.

  Lemma finmap_to_list_empty_inv (m : M A) :
    Permutation (finmap_to_list m) []  m = .
  Proof. rewrite <-finmap_to_list_empty. apply finmap_to_list_inj. Qed.
  Lemma finmap_to_list_insert_inv (m : M A) l i x :
    Permutation (finmap_to_list m) ((i,x) :: l) 
    m = <[i:=x]>(finmap_of_list l).
  Proof.
    intros Hperm. apply finmap_to_list_inj.
    assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
    { rewrite <-Hperm. auto using finmap_to_list_key_nodup. }
    simpl in Hnodup. rewrite NoDup_cons in Hnodup.
    destruct Hnodup.
    rewrite Hperm, finmap_to_list_insert, finmap_to_of_list;
      auto using not_elem_of_finmap_of_list_1.
  Qed.

  (** ** Properties of the forall predicate *)
  Section finmap_forall.
    Context (P : K  A  Prop).

    Lemma finmap_forall_to_list m :
      finmap_forall P m  Forall (curry P) (finmap_to_list m).
    Proof.
      rewrite Forall_forall. split.
      * intros Hforall [i x].
        rewrite elem_of_finmap_to_list. by apply (Hforall i x).
      * intros Hforall i x.
        rewrite <-elem_of_finmap_to_list. by apply (Hforall (i,x)).
    Qed.

    Global Instance finmap_forall_dec
      `{ i x, Decision (P i x)} m : Decision (finmap_forall P m).
    Proof.
      refine (cast_if (decide (Forall (curry P) (finmap_to_list m))));
        by rewrite finmap_forall_to_list.
    Defined.
  End finmap_forall.

  (** ** Properties of the merge operation *)
  Section merge_with.
    Context (f : option A  option A  option A).

    Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      by rewrite !(merge_spec f), lookup_empty, (left_id None f).
    Qed.
    Global Instance: RightId (=) None f  RightId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      by rewrite !(merge_spec f), lookup_empty, (right_id None f).
    Qed.

    Context `{!PropHolds (f None None = None)}.

    Lemma merge_spec_alt m1 m2 m :
      ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
    Proof.
      split; [| intro; subst; apply (merge_spec _) ].
      intros Hlookup. apply finmap_eq. intros. rewrite Hlookup.
      apply (merge_spec _).
    Qed.

    Lemma merge_commutative m1 m2 :
      ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
      merge f m1 m2 = merge f m2 m1.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Commutative (=) f  Commutative (=) (merge f).
    Proof.
      intros ???. apply merge_commutative. intros. by apply (commutative f).
    Qed.

    Lemma merge_associative m1 m2 m3 :
      ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
            f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
      merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Associative (=) f  Associative (=) (merge f).
    Proof.
      intros ????. apply merge_associative. intros. by apply (associative f).
    Qed.

    Lemma merge_idempotent m1 :
      ( i, f (m1 !! i) (m1 !! i) = m1 !! i) 
      merge f m1 m1 = m1.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
    Proof.
      intros ??. apply merge_idempotent. intros. by apply (idempotent f).
    Qed.
  End merge_with.

  (** ** Properties on the intersection forall relation *)
743
744
745
  Section intersection_forall.
    Context (R : relation A).

Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
    Global Instance finmap_intersection_forall_sym:
      Symmetric R  Symmetric (finmap_intersection_forall R).
748
    Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
749
750
    Lemma finmap_intersection_forall_empty_l (m : M A) :
      finmap_intersection_forall R  m.
751
    Proof. intros ???. by simpl_map. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
753
    Lemma finmap_intersection_forall_empty_r (m : M A) :
      finmap_intersection_forall R m .
754
755
756
757
    Proof. intros ???. by simpl_map. Qed.

    (** Due to the finiteness of finite maps, we can extract a witness are
    property does not hold for the intersection. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
758
759
    Lemma finmap_not_intersection_forall `{ x y, Decision (R x y)} (m1 m2 : M A) :
      ¬finmap_intersection_forall R m1 m2
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
          i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  ¬R x1 x2.
    Proof.
      split.
      * intros Hdisjoint.
        set (Pi i :=  x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  ¬R x1 x2).
        assert ( i, Decision (Pi i)).
        { intros i. unfold Decision, Pi.
          destruct (m1 !! i) as [x1|], (m2 !! i) as [x2|]; try (by left).
          destruct (decide (R x1 x2)).
          * naive_solver.
          * intuition congruence. }
        destruct (decide (cexists Pi (dom (listset _) m1  dom (listset _) m2)))
          as [[i [Hdom Hi]] | Hi].
        + rewrite elem_of_intersection in Hdom.
          rewrite !(elem_of_dom (listset _)), !is_Some_alt in Hdom.
          destruct Hdom as [[x1 ?] [x2 ?]]. exists i x1 x2; auto.
        + destruct Hdisjoint. intros i x1 x2 Hx1 Hx2.
          apply dec_stable. intros HP.
          destruct Hi. exists i.
          rewrite elem_of_intersection, !(elem_of_dom (listset _)).
          intuition eauto; congruence.
      * intros (i & x1 & x2 & Hx1 & Hx2 & Hx1x2) Hdisjoint.
        by apply Hx1x2, (Hdisjoint i x1 x2).
    Qed.
  End intersection_forall.

Robbert Krebbers's avatar
Robbert Krebbers committed
786
  (** ** Properties on the disjoint maps *)
787
788
789
790
791
792
793
794
795
796
  Lemma finmap_disjoint_alt (m1 m2 : M A) :
    m1  m2   i, m1 !! i = None  m2 !! i = None.
  Proof.
    split; intros Hm1m2 i; specialize (Hm1m2 i);
      destruct (m1 !! i), (m2 !! i); naive_solver.
  Qed.    
  Lemma finmap_not_disjoint (m1 m2 : M A) :
    ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
  Proof.
    unfold disjoint, finmap_disjoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
797
798
    rewrite finmap_not_intersection_forall.
    * naive_solver.
799
800
801
802
    * right. auto.
  Qed.

  Global Instance: Symmetric (@disjoint (M A) _).
Robbert Krebbers's avatar
Robbert Krebbers committed
803
  Proof. apply finmap_intersection_forall_sym. auto. Qed.
804
  Lemma finmap_disjoint_empty_l (m : M A) :   m.
Robbert Krebbers's avatar
Robbert Krebbers committed
805
  Proof. apply finmap_intersection_forall_empty_l. Qed.
806
  Lemma finmap_disjoint_empty_r (m : M A) : m  .
Robbert Krebbers's avatar
Robbert Krebbers committed
807
  Proof. apply finmap_intersection_forall_empty_r. Qed.
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

  Lemma finmap_disjoint_weaken (m1 m1' m2 m2' : M A) :
    m1'  m2' 
    m1  m1'  m2  m2' 
    m1  m2.
  Proof.
    intros Hdisjoint Hm1 Hm2 i x1 x2 Hx1 Hx2.
    destruct (Hdisjoint i x1 x2); auto.
  Qed.
  Lemma finmap_disjoint_weaken_l (m1 m1' m2  : M A) :
    m1'  m2  m1  m1'  m1  m2.
  Proof. eauto using finmap_disjoint_weaken. Qed.
  Lemma finmap_disjoint_weaken_r (m1 m2 m2' : M A) :
    m1  m2'  m2  m2'  m1  m2.
  Proof. eauto using finmap_disjoint_weaken. Qed.

  Lemma finmap_disjoint_Some_l (m1 m2 : M A) i x:
    m1  m2 
    m1 !! i = Some x 
    m2 !! i = None.
  Proof.
    intros Hdisjoint ?. rewrite eq_None_not_Some, is_Some_alt.
    intros [x2 ?]. by apply (Hdisjoint i x x2).
  Qed.
  Lemma finmap_disjoint_Some_r (m1 m2 : M A) i x:
    m1  m2 
    m2 !! i = Some x 
    m1 !! i = None.
  Proof. rewrite (symmetry_iff ()). apply finmap_disjoint_Some_l. Qed.

  Lemma finmap_disjoint_singleton_l (m : M A) i x :
    {[(i, x)]}  m  m !! i = None.
  Proof.
    split.
    * intro. apply (finmap_disjoint_Some_l {[(i, x)]} _ _ x); by simpl_map.
    * intros ? j y1 y2 ??.
      destruct (decide (i = j)); simplify_map_equality; congruence.
  Qed.
  Lemma finmap_disjoint_singleton_r (m : M A) i x :
    m  {[(i, x)]}  m !! i = None.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_singleton_l. Qed.

  Lemma finmap_disjoint_singleton_l_2 (m : M A) i x :
    m !! i = None  {[(i, x)]}  m.
  Proof. by rewrite finmap_disjoint_singleton_l. Qed.
  Lemma finmap_disjoint_singleton_r_2 (m : M A) i x :
    m !! i = None  m  {[(i, x)]}.
  Proof. by rewrite finmap_disjoint_singleton_r. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
857
  (** ** Properties of the union and intersection operation *)
858
  Section union_intersection_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
859
    Context (f : A  A  option A).
860
861
862
863

    Lemma finmap_union_with_Some m1 m2 i x y :
      m1 !! i = Some x 
      m2 !! i = Some y 
Robbert Krebbers's avatar
Robbert Krebbers committed
864
      union_with f m1 m2 !! i = f x y.
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.
    Lemma finmap_union_with_Some_l m1 m2 i x :
      m1 !! i = Some x 
      m2 !! i = None 
      union_with f m1 m2 !! i = Some x.
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.
    Lemma finmap_union_with_Some_r m1 m2 i y :
      m1 !! i = None 
      m2 !! i = Some y 
      union_with f m1 m2 !! i = Some y.
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
886
    Global Instance: LeftId (=)  (@union_with _ (M A) _ f).
887
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
888
    Global Instance: RightId (=)  (@union_with _ (M A) _ f).
889
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
890
891
    Global Instance:
      Commutative (=) f  Commutative (=) (@union_with _ (M A) _ f).
892
893
894
895
896
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
  End union_intersection_with.

  Global Instance: LeftId (=)  (@union (M A) _) := _.
  Global Instance: RightId (=)  (@union (M A) _) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
897
898
899
900
901
902
903
904
905
906
  Global Instance: Associative (=) (@union (M A) _).
  Proof.
    intros m1 m2 m3. unfold union, finmap_union, union_with, finmap_union_with.
    apply (merge_associative _). intros i.
    by destruct (m1 !! i), (m2 !! i), (m3 !! i).
  Qed.
  Global Instance: Idempotent (=) (@union (M A) _).
    intros m. unfold union, finmap_union, union_with, finmap_union_with.
    apply (merge_idempotent _). intros i. by destruct (m !! i).
  Qed.
907

908
  Lemma lookup_union_Some_raw (m1 m2 : M A) i x :
909
910
911
912
913
    (m1  m2) !! i = Some x 
      m1 !! i = Some x  (m1 !! i = None  m2 !! i = Some x).
  Proof.
    unfold union, finmap_union, union_with, finmap_union_with.
    rewrite (merge_spec _).
Robbert Krebbers's avatar
Robbert Krebbers committed
914
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
915
  Qed.
916
  Lemma lookup_union_None (m1 m2 : M A) i :
917
    (m1  m2) !! i = None  m1 !! i = None  m2 !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
918
919
920
921
922
  Proof.
    unfold union, finmap_union, union_with, finmap_union_with.
    rewrite (merge_spec _).
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
  Qed.
923

924
  Lemma lookup_union_Some (m1 m2 : M A) i x :
925
926
927
    m1  m2 
    (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = Some x.
  Proof.
928
    intros Hdisjoint. rewrite lookup_union_Some_raw.
929
930
931
    intuition eauto using finmap_disjoint_Some_r.
  Qed.

932
  Lemma lookup_union_Some_l (m1 m2 : M A) i x :
933
934
    m1 !! i = Some x 
    (m1  m2) !! i = Some x.
935
936
  Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
  Lemma lookup_union_Some_r (m1 m2 : M A) i x :
937
938
939
    m1  m2 
    m2 !! i = Some x 
    (m1  m2) !! i = Some x.
940
  Proof. intro. rewrite lookup_union_Some; intuition. Qed.
941
942
943
944
945

  Lemma finmap_union_comm (m1 m2 : M A) :
    m1  m2 
    m1  m2 = m2  m1.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
946
    intros Hdisjoint. apply (merge_commutative (union_with (λ x _, Some x))).
947
948
949
950
951
952
953
954
955
956
    intros i. specialize (Hdisjoint i).
    destruct (m1 !! i), (m2 !! i); compute; naive_solver.
  Qed.

  Lemma finmap_subseteq_union (m1 m2 : M A) :
    m1  m2 
    m1  m2 = m2.
  Proof.
    intros Hm1m2.
    apply finmap_eq. intros i. apply option_eq. intros x.
957
    rewrite lookup_union_Some_raw. split; [by intuition |].
958
959
960
961
962
963
    intros Hm2. specialize (Hm1m2 i).
    destruct (m1 !! i) as [y|]; [| by auto].
    rewrite (Hm1m2 y eq_refl) in Hm2. intuition congruence.
  Qed.
  Lemma finmap_subseteq_union_l (m1 m2 : M A) :
    m1  m1  m2.
964
  Proof. intros ? i x. rewrite lookup_union_Some_raw. intuition. Qed.
965
966
967
968
969
970
971
972
973
974
975
976
  Lemma finmap_subseteq_union_r (m1 m2 : M A) :
    m1  m2 
    m2  m1  m2.
  Proof.
    intros. rewrite finmap_union_comm by done.
    by apply finmap_subseteq_union_l.
  Qed.

  Lemma finmap_disjoint_union_l (m1 m2 m3 : M A) :
    m1  m2  m3  m1  m3  m2  m3.
  Proof.
    rewrite !finmap_disjoint_alt.
977
    setoid_rewrite lookup_union_None. naive_solver.
978
979
980
981
982
  Qed.
  Lemma finmap_disjoint_union_r (m1 m2 m3 : M A) :
    m1  m2  m3  m1  m2  m1  m3.
  Proof.
    rewrite !finmap_disjoint_alt.
983
    setoid_rewrite lookup_union_None. naive_solver.
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
  Qed.
  Lemma finmap_disjoint_union_l_2 (m1 m2 m3 : M A) :
    m1  m3  m2  m3  m1  m2  m3.
  Proof. by rewrite finmap_disjoint_union_l. Qed.
  Lemma finmap_disjoint_union_r_2 (m1 m2 m3 : M A) :
    m1  m2  m1  m3  m1  m2  m3.
  Proof. by rewrite finmap_disjoint_union_r. Qed.
  Lemma finmap_union_cancel_l (m1 m2 m3 : M A) :
    m1  m3 
    m2  m3 
    m1  m3 = m2  m3 
    m1 = m2.
  Proof.
    revert m1 m2 m3.
    cut ( (m1 m2 m3 : M A) i x,
      m1  m3 
      m2  m3 
      m1  m3 = m2  m3 
      m1 !! i = Some x  m2 !! i = Some x).
    { intros. apply finmap_eq. intros i.
      apply option_eq. naive_solver. }
    intros m1 m2 m3 b v Hm1m3 Hm2m3 E ?.
1006
1007
    destruct (proj1 (lookup_union_Some m2 m3 b v Hm2m3)) as [E2|E2].
    * rewrite <-E. by apply lookup_union_Some_l.
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    * done.
    * contradict E2. by apply eq_None_ne_Some, finmap_disjoint_Some_l with m1 v.
  Qed.
  Lemma finmap_union_cancel_r (m1 m2 m3 : M A) :
    m1  m3 
    m2  m3 
    m3  m1 = m3  m2 
    m1 = m2.
  Proof.
    intros ??. rewrite !(finmap_union_comm m3) by done.
    by apply finmap_union_cancel_l.
  Qed.

1021
  Lemma insert_union_singleton_l (m : M A) i x :
1022
1023
1024
    <[i:=x]>m = {[(i,x)]}  m.
  Proof.
    apply finmap_eq. intros j. apply option_eq. intros y.
1025
    rewrite lookup_union_Some_raw.
1026
1027
    destruct (decide (i = j)); simplify_map_equality; intuition congruence.
  Qed.
1028
  Lemma insert_union_singleton_r (m : M A) i x :
1029
1030
1031
    m !! i = None 
    <[i:=x]>m = m  {[(i,x)]}.
  Proof.
1032
    intro. rewrite insert_union_singleton_l, finmap_union_comm; [done |].
1033
1034
1035
1036
1037
1038
    by apply finmap_disjoint_singleton_l.
  Qed.

  Lemma finmap_disjoint_insert_l (m1 m2 : M A) i x :
    <[i:=x]>m1  m2  m2 !! i = None  m1  m2.
  Proof.
1039
    rewrite insert_union_singleton_l.
1040
1041
1042
1043
1044
    by rewrite finmap_disjoint_union_l, finmap_disjoint_singleton_l.
  Qed.
  Lemma finmap_disjoint_insert_r (m1 m2 : M A) i x :
    m1  <[i:=x]>m2  m1 !! i = None  m1  m2.
  Proof.
1045
    rewrite insert_union_singleton_l.
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    by rewrite finmap_disjoint_union_r, finmap_disjoint_singleton_r.
  Qed.

  Lemma finmap_disjoint_insert_l_2 (m1 m2 : M A) i x :
    m2 !! i = None  m1  m2  <[i:=x]>m1  m2.
  Proof. by rewrite finmap_disjoint_insert_l. Qed.
  Lemma finmap_disjoint_insert_r_2 (m1 m2 : M A) i x :
    m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
  Proof. by rewrite finmap_disjoint_insert_r. Qed.

1056
  Lemma insert_union_l (m1 m2 : M A) i x :
1057
    <[i:=x]>(m1  m2) = <[i:=x]>m1  m2.
1058
1059
  Proof. by rewrite !insert_union_singleton_l, (associative ()). Qed.
  Lemma insert_union_r (m1 m2 : M A) i x :
1060
1061
1062
    m1 !! i = None 
    <[i:=x]>(m1  m2) = m1  <[i:=x]>m2.
  Proof.
1063
    intro. rewrite !insert_union_singleton_l, !(associative ()).
1064
1065
1066
1067
    rewrite (finmap_union_comm m1); [done |].
    by apply finmap_disjoint_singleton_r.
  Qed.

1068
  Lemma insert_list_union l (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
1069
    insert_list l m = finmap_of_list l  m.
1070
1071
1072
  Proof.
    induction l; simpl.
    * by rewrite (left_id _ _).
1073
    * by rewrite IHl, insert_union_l.
1074
1075
  Qed.

1076
  Lemma insert_subseteq_r (m1 m2 : M A) i x :
1077
1078
    m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
  Proof.
1079
    intros ?? j. by destruct (decide (j = i)); intros; simplify_map_equality.
1080
1081
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1082
  (** ** Properties of the delete operation *)
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
  Lemma finmap_disjoint_delete_l (m1 m2 : M A) i :
    m1  m2  delete i m1  m2.
  Proof.
    rewrite !finmap_disjoint_alt.
    intros Hdisjoint j. destruct (Hdisjoint j); auto.
    rewrite lookup_delete_None. tauto.
  Qed.
  Lemma finmap_disjoint_delete_r (m1 m2 : M A) i :
    m1  m2  m1  delete i m2.
  Proof. symmetry. by apply finmap_disjoint_delete_l. Qed.

  Lemma finmap_disjoint_delete_list_l (m1 m2 : M A) is :
    m1  m2  delete_list is m1  m2.
  Proof. induction is; simpl; auto using finmap_disjoint_delete_l. Qed.
  Lemma finmap_disjoint_delete_list_r (m1 m2 : M A) is :
    m1  m2  m1  delete_list is m2.
  Proof. induction is; simpl; auto using finmap_disjoint_delete_r. Qed.

  Lemma finmap_union_delete (m1 m2 : M A) i :
    delete i (m1  m2) = delete i m1  delete i m2.
  Proof.
    intros. apply finmap_eq. intros j. apply option_eq. intros y.
    destruct (decide (i = j)); simplify_map_equality;
Robbert Krebbers's avatar
Robbert Krebbers committed
1106
    rewrite ?lookup_union_Some_raw; simpl_map; intuition congruence.
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
  Qed.
  Lemma finmap_union_delete_list (m1 m2 : M A) is :
    delete_list is (m1  m2) = delete_list is m1  delete_list is m2.
  Proof.
    induction is; simpl; [done |].
    by rewrite IHis, finmap_union_delete.
  Qed.

  Lemma finmap_disjoint_union_list_l (ms : list (M A)) (m : M A) :
     ms  m  Forall ( m) ms.
  Proof.
    split.
    * induction ms; simpl; rewrite ?finmap_disjoint_union_l; intuition.
    * induction 1; simpl.
      + apply finmap_disjoint_empty_l.
      + by rewrite finmap_disjoint_union_l.
  Qed.
  Lemma finmap_disjoint_union_list_r (ms : list (M A)) (m : M A) :
    m   ms  Forall ( m) ms.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_union_list_l. Qed.

  Lemma finmap_disjoint_union_list_l_2 (ms : list (M A)) (m : M A) :
    Forall ( m) ms   ms  m.
  Proof. by rewrite finmap_disjoint_union_list_l. Qed.
  Lemma finmap_disjoint_union_list_r_2 (ms : list (M A)) (m : M A) :
    Forall ( m) ms  m   ms.
  Proof. by rewrite finmap_disjoint_union_list_r. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1135
1136
1137
  (** ** Properties of the conversion from lists to maps *)
  Lemma finmap_disjoint_of_list_l (m : M A) ixs :
    finmap_of_list ixs  m  Forall (λ ix, m !! fst ix = None) ixs.
1138
1139
1140
1141
1142
1143
1144
  Proof.
    split.
    * induction ixs; simpl; rewrite ?finmap_disjoint_insert_l in *; intuition.
    * induction 1; simpl.
      + apply finmap_disjoint_empty_l.
      + rewrite finmap_disjoint_insert_l. auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1145
1146
1147
  Lemma finmap_disjoint_of_list_r (m : M A) ixs :
    m  finmap_of_list ixs  Forall (λ ix, m !! fst ix = None) ixs.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_of_list_l. Qed.
1148

Robbert Krebbers's avatar
Robbert Krebbers committed
1149
  Lemma finmap_disjoint_of_list_zip_l (m : M A) is xs :
1150
    same_length is xs 
Robbert Krebbers's avatar
Robbert Krebbers committed
1151
    finmap_of_list (zip is xs)  m  Forall (λ i, m !! i = None) is.
1152
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
1153
    intro. rewrite finmap_disjoint_of_list_l.
1154
1155
1156
    rewrite <-(zip_fst is xs) at 2 by done.
    by rewrite Forall_fmap.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1157
  Lemma finmap_disjoint_of_list_zip_r (m : M A) is xs :
1158
    same_length is xs 
Robbert Krebbers's avatar
Robbert Krebbers committed
1159
    m  finmap_of_list (zip is xs)  Forall (λ i, m !! i = None) is.
1160
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
1161
    intro. by rewrite (symmetry_iff ()), finmap_disjoint_of_list_zip_l.
1162
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1163
  Lemma finmap_disjoint_of_list_zip_l_2 (m : M A) is xs :
1164
1165
    same_length is xs 
    Forall (λ i, m !! i = None) is 
Robbert Krebbers's avatar
Robbert Krebbers committed
1166
1167
1168
    finmap_of_list (zip is xs)  m.
  Proof. intro. by rewrite finmap_disjoint_of_list_zip_l. Qed.
  Lemma finmap_disjoint_of_list_zip_r_2 (m : M A) is xs :
1169
1170
    same_length is xs 
    Forall (λ i, m !! i = None) is 
Robbert Krebbers's avatar
Robbert Krebbers committed
1171
1172
    m  finmap_of_list (zip is xs).
  Proof. intro. by rewrite finmap_disjoint_of_list_zip_r. Qed.
1173

Robbert Krebbers's avatar
Robbert Krebbers committed
1174
  (** ** Properties with respect to vectors *)
1175
  Lemma union_delete_vec {n} (ms : vec (M A) n) (i : fin n) :
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    list_disjoint ms 
    ms !!! i   delete (fin_to_nat i) (vec_to_list ms) =  ms.
  Proof.
    induction ms as [|m ? ms]; inversion_clear 1