collections.v 25.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
Require Export prelude.base prelude.tactics prelude.orders.
7

8
9
10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12
13
Section simple_collection.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15
  Lemma elem_of_empty x : x    False.
16
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
20
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
21
22
23
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
24
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
26
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
28
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
29
30
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Proof. firstorder. Qed.
32
33
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
34
35
36
37
38
39
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
40
41
42
43
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
44
45
46
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
47
    * intros ??. rewrite elem_of_singleton. by intros ->.
48
49
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
50
  Global Instance singleton_proper : Proper ((=) ==> ()) singleton.
51
  Proof. by repeat intro; subst. Qed.
52
  Global Instance elem_of_proper: Proper ((=) ==> () ==> iff) () | 5.
53
  Proof. intros ???; subst. firstorder. Qed.
54
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
55
56
  Proof.
    split.
57
58
59
60
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
61
62
63
64
65
66
67
68
  Qed.
  Lemma non_empty_singleton x : {[ x ]}  .
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

69
70
71
72
73
74
75
76
77
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
78
79
80
81
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
82
83
84
85
86
87
88
89
90
91
92
93
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
94
95
End simple_collection.

96
Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
97
  match x with None =>  | Some a => {[ a ]} end.
98
99
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
100

101
102
103
104
105
106
107
108
109
110
111
Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    * induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
112
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
113
114
115
    * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
End of_option_list.
116
117
118

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
119
120
121
122
123
124
125
126
127

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
128
129
130
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
131
132
133
134
135
136
137
138
139
140
141
142
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.
143

144
145
146
147
148
149
150
151
152
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
153
154
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
155
  | _  _  _ =>
156
157
158
159
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
160
  | _  _  _ =>
161
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
162
163
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
164
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
165
166
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
167
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
168
  | _  _ = _ =>
169
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
170
171
172
173
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
174
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
175
    destruct H as [? [H1 H2]]; go H1; go H2
176
  | _  guard _; _ =>
177
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
178
179
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
Robbert Krebbers's avatar
Robbert Krebbers committed
180
  | _  of_list _ => apply elem_of_of_list in H
181
182
183
184
185
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

186
187
Ltac decompose_empty := repeat
  match goal with
188
189
190
191
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
192
193
194
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
195
196
197
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
198
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
199
200
  end.

201
202
203
204
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
205
206
207
208
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
209
    | context [ _  _ ] => setoid_rewrite subset_spec in H
210
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
211
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
212
213
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
214
215
216
217
218
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
219
220
221
222
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
223
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
Robbert Krebbers's avatar
Robbert Krebbers committed
224
225
    | context [ _  of_option _ ] => setoid_rewrite elem_of_of_option in H
    | context [ _  of_list _ ] => setoid_rewrite elem_of_of_list in H
226
227
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
228
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
229
  | |- context [ _  _ ] => setoid_rewrite subset_spec
230
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
232
233
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
234
  | |- context [ _   ] => setoid_rewrite elem_of_empty
235
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
236
237
238
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
239
240
241
242
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
243
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
  | |- context [ _  of_option _ ] => setoid_rewrite elem_of_of_option
  | |- context [ _  of_list _ ] => setoid_rewrite elem_of_of_list
Robbert Krebbers's avatar
Robbert Krebbers committed
246
247
  end.

248
249
250
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
251
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
252
  setoid_subst;
253
  decompose_empty;
254
255
256
257
258
259
260
261
262
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
263
Tactic Notation "esolve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
264
  setoid_subst;
265
  decompose_empty;
266
267
268
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
269
270
 
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
271
272
273
Section collection.
  Context `{Collection A C}.

274
  Global Instance: Lattice C.
275
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
277
278
279
280
  Global Instance difference_proper : Proper (() ==> () ==> ()) ().
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
281
282
283
284
  Lemma intersection_singletons x : {[x]}  {[x]}  {[x]}.
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
285
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
Robbert Krebbers's avatar
Robbert Krebbers committed
286
287
288
289
290
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
292
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
294
295
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

296
297
298
299
300
301
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
302
303
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
304
305
306
307
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
310
311
312
313
314
315
316
317
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
318
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
319
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
320
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
321
322
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
323
324
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
325
326
327
328
329
330
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.
331
332
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
    Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
333
334
335
336
337
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
338
339
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
340
341
342
343
344
345
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
346
347
348
349
350
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
351
352
353
354
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
355
356
357
358
359
360
361
362
363
364
365
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
366
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
367
368
369
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
370
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
371

372
(** * Sets without duplicates up to an equivalence *)
373
Section NoDup.
374
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
376

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
377
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
379

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
381
382
383
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
384
385
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  Qed.
387
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
389
390
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
391
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
393
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
394
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
395
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
396

397
398
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
399
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
401
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402

403
404
405
406
407
408
409
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
410
411
  Proof.
    intros Hin Hnodup [y [??]].
412
    rewrite (Hnodup x y) in Hin; solve_elem_of.
413
  Qed.
414
415
416
417
418
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
419

420
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
421
Section quantifiers.
422
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
449
450
End quantifiers.

451
Section more_quantifiers.
452
  Context `{SimpleCollection A B}.
453

454
455
456
457
458
459
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
460
461
End more_quantifiers.

462
463
464
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
465
466
467
468
469
470
471
472
473
474
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
475

476
477
Section fresh.
  Context `{FreshSpec A C}.
478

479
480
  Global Instance fresh_proper: Proper (() ==> (=)) fresh.
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
481
482
  Global Instance fresh_list_proper: Proper ((=) ==> () ==> (=)) fresh_list.
  Proof.
483
484
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
485
  Qed.
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
502
503
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
  Proof. rewrite !Forall_fresh_alt; esolve_elem_of. Qed.
504

505
506
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
507
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
508
  Proof.
509
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
510
511
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
512
  Qed.
513
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
514
  Proof.
515
    revert X. induction n; simpl; constructor; auto.
516
517
518
519
520
    intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
521
522
  Qed.
End fresh.
523

524
(** * Properties of implementations of collections that form a monad *)
525
526
527
Section collection_monad.
  Context `{CollectionMonad M}.

528
529
530
531
532
533
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
  Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed.
534
535
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
Robbert Krebbers's avatar
Robbert Krebbers committed
536
  Proof. intros X Y [??]; split; esolve_elem_of. Qed.
537

538
539
540
541
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
  Proof. esolve_elem_of. Qed.
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
  Proof. esolve_elem_of. Qed.
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) X :
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
562
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
563
564
565
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
566
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
567
  Proof.
568
569
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
570
571
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
572
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
573
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
574
575
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
576
577
578
579
580
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
581
End collection_monad.