fin_maps.v 68.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
Require Export prelude.relations prelude.vector prelude.orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100
101
102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103
104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
111
112
113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114
115
116
117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
(** ** Setoids *)
Section setoid.
120
121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
128
129
130
131
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
136
137
138
139
140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
165
166
167
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
176
177
178
179
180
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
  Lemma map_equiv_lookup (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof.
    intros Hm ?. destruct (equiv_Some (m1 !! i) (m2 !! i) x) as (y&?&?); eauto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
End setoid.

(** ** General properties *)
184
185
186
187
188
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
190
191
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
192
Global Instance: EmptySpec (M A).
193
Proof.
194
195
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
196
Qed.
197
198
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  split; [intros m i; by destruct (m !! i); simpl|].
200
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
203
Qed.
204
Global Instance: PartialOrder (() : relation (M A)).
205
Proof.
206
207
208
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
209
210
211
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
212
Proof. rewrite !map_subseteq_spec. auto. Qed.
213
214
215
216
217
218
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
219
220
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
221
222
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
223
224
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
225
226
227
228
229
230
231
232
233
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
234
235
236
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
237
238

(** ** Properties of the [partial_alter] operation *)
239
240
241
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
242
243
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
244
245
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
246
247
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
248
249
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
250
Qed.
251
Lemma partial_alter_commute {A} f g (m : M A) i j :
252
  i  j  partial_alter f i (partial_alter g j m) =
253
254
    partial_alter g j (partial_alter f i m).
Proof.
255
256
257
258
259
260
261
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
262
263
264
265
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
266
267
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
268
Qed.
269
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
270
Proof. by apply partial_alter_self_alt. Qed.
271
Lemma partial_alter_subseteq {A} f (m : M A) i :
272
  m !! i = None  m  partial_alter f i m.
273
274
275
276
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
277
Lemma partial_alter_subset {A} f (m : M A) i :
278
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
279
Proof.
280
281
282
283
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
284
285
286
Qed.

(** ** Properties of the [alter] operation *)
287
288
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
290
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
291
Proof. unfold alter. apply lookup_partial_alter. Qed.
292
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
293
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
294
295
296
297
298
299
300
301
302
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
303
304
305
306
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
307
  destruct (decide (i = j)) as [->|?].
308
309
310
311
312
313
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
314
315
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
316
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
318
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
319
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
322
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
323
324
325
326
327
328
329
330
331
332
333
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  * destruct (decide (i = j)) as [->|?];
335
336
337
338
339
340
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
341
342
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
343
344
345
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
346
Lemma delete_singleton {A} i (x : A) : delete i {[i  x]} = .
347
348
349
350
351
352
353
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
354
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
355
Proof.
356
357
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
375
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
376
377
378
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
379
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
380
  m1  m2  delete i m1  delete i m2.
381
382
383
384
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
385
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
386
Proof.
387
388
389
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
390
Qed.
391
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
392
393
394
395
396
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
397
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
398
Proof. rewrite lookup_insert. congruence. Qed.
399
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
400
401
402
403
404
405
406
407
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
408
  * destruct (decide (i = j)) as [->|?];
409
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
410
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
411
412
413
414
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
415
416
417
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
418
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
420
421
422
423
424
425
426
427
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
428
429
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
430
Qed.
431
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
432
Proof. apply partial_alter_subseteq. Qed.
433
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
434
435
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
436
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
437
Proof.
438
439
440
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
441
442
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
443
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
444
Proof.
445
446
447
448
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
449
450
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
451
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
452
Proof.
453
454
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
455
  * rewrite lookup_insert. congruence.
456
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
457
458
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
459
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
460
Proof.
461
462
463
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
464
465
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
466
  m1 !! i = None  <[i:=x]> m1  m2 
467
468
469
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
470
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
471
472
473
474
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
475
476
477
478
479
480
481
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
482
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i  x]}.
483
Proof. done. Qed.
484
485
486

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
487
  {[i  x]} !! j = Some y  i = j  x = y.
488
Proof.
489
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
490
Qed.
491
492
493
Lemma lookup_singleton_None {A} i j (x : A) : {[i  x]} !! j = None  i  j.
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
Lemma lookup_singleton {A} i (x : A) : {[i  x]} !! i = Some x.
494
Proof. by rewrite lookup_singleton_Some. Qed.
495
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i  x]} !! j = None.
496
Proof. by rewrite lookup_singleton_None. Qed.
497
Lemma map_non_empty_singleton {A} i (x : A) : {[i  x]}  .
498
499
500
501
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
502
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i  x]} = {[i  y]}.
503
Proof.
504
  unfold singletonM, map_singleton, insert, map_insert.
505
506
  by rewrite <-partial_alter_compose.
Qed.
507
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i  x]} = {[i  f x]}.
508
Proof.
509
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
510
511
512
513
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
514
  i  j  alter f i {[j  x]} = {[j  x]}.
515
Proof.
516
517
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
518
519
Qed.

520
521
522
523
524
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
525
Lemma omap_singleton {A B} (f : A  option B) i x y :
526
  f x = Some y  omap f {[ i  x ]} = {[ i  y ]}.
527
528
529
530
531
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
534
535
536
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
537
538
539
540
541
542
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
543
544
545
546
547
548
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
549

550
551
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
552
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
553
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
554
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
555
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
556
557
558
559
560
561
562
563
564
565
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
566
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
567
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
568
Proof.
569
570
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
571
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
572
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
573
574
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
575
  map_of_list l !! i = Some x  (i,x)  l.
576
Proof.
577
578
579
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
580
581
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
582
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
583
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
584
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
585
  i  l.*1  map_of_list l !! i = None.
586
Proof.
587
588
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
589
590
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
591
  map_of_list l !! i = None  i  l.*1.
592
Proof.
593
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
594
595
596
597
598
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
599
  i  l.*1  map_of_list l !! i = None.
600
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
601
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
602
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
603
604
605
606
607
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
608
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
609
Proof.
610
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
611
612
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
613
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
614
615
616
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
617
    by auto using NoDup_fst_map_to_list.
618
619
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
620
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
621
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
622
Lemma map_to_list_inj {A} (m1 m2 : M A) :
623
  map_to_list m1  map_to_list m2  m1 = m2.
624
Proof.
625
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
626
  auto using map_of_list_proper, NoDup_fst_map_to_list.
627
Qed.
628
629
630
631
632
633
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
634
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
635
636
637
638
639
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
640
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
641
Proof.
642
  intros. apply map_of_list_inj; csimpl.
643
644
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
645
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
646
647
648
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
649
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
650
651
652
653
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
654
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
655
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
656
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
657
658
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
659
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
660
661
Proof.
  intros Hperm. apply map_to_list_inj.
662
663
664
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
665
666
667
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
668
669
670
671
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
672
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
673
Qed.
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
709
Lemma map_ind {A} (P : M A  Prop) :
710
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
711
Proof.
712
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
713
  { intros help m.
714
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
715
716
717
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
718
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
719
720
721
722
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
723
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
724
725
726
727
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
728
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
729
730
731
732
733
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
734
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
735
736
737
738
739
740
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

741
(** ** Properties of the [map_Forall] predicate *)
742
Section map_Forall.
743
744
Context {A} (P : K  A  Prop).

745
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
746
747
Proof.
  rewrite Forall_forall. split.
748
749
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
750
Qed.
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
Lemma map_Forall_empty : map_Forall P .
Proof