list.v 142 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
38
39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48
49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50
51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55
56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
59
60
61
62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64
65
66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67
68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73
74
75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77
78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87
88
89
90
91
92
93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105
106
107
108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
114
115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
  end.
Arguments resize {_} !_ _ !_.

120
121
122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123
124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126
127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129
130
131
132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134
135
136
137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139
140
141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142
143
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
144
145
146
147
148
149
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
150
151
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
152
153
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
154
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
155
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
156
  fix go l :=
157
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
158
159
160
161
162

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
163
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
164
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
165
166
167
168
169
170
171
172
173
174
175
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
176

177
178
179
180
181
182
183
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
184
185
186
187

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
188
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
189
190
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
191
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
192

193
194
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
195
196
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
197
198
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
199
200
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
201

202
203
204
205
206
207
208
209
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
210
      if decide_rel (=) x1 x2
211
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
212
213
214
215
216
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
217
218
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
219
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
220

221
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
222
223
224
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
225
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
226
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
227
Infix "`sublist`" := sublist (at level 70) : C_scope.
228
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
229
230

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
231
from [l1] while possiblity changing the order. *)
232
233
234
235
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
236
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
237
238
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
239
Hint Extern 0 (?x `contains` ?y) => reflexivity.
240
241
242
243
244
245
246
247
248
249

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
250
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
251
252
    end.
End contains_dec_help.
253

254
255
256
257
258
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
284
      then list_difference l k else x :: list_difference l k
285
    end.
286
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
287
288
289
290
291
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
292
      then x :: list_intersection l k else list_intersection l k
293
294
295
296
297
298
299
300
301
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
302
303

(** * Basic tactics on lists *)
304
305
306
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
307
308
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
309
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
310
Tactic Notation "discriminate_list_equality" :=
311
312
313
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
314

315
316
317
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
318
319
320
321
322
323
324
325
326
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
327
Ltac simple_simplify_list_equality :=
328
  repeat match goal with
329
  | _ => progress simplify_equality'
330
  | H : _ ++ _ = _ ++ _ |- _ => first
331
332
333
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  | H : [?x] !! ?i = Some ?y |- _ =>
335
    destruct i; [change (Some x = Some y) in H | discriminate]
336
  end.
337

338
339
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
Context {A : Type}.
341
342
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
343

344
345
346
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
347
Proof. intros ???. apply app_inv_head. Qed.
348
Global Instance:  k, Injective (=) (=) (++ k).
349
Proof. intros ???. apply app_inv_tail. Qed.
350
351
352
353
354
355
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
356

357
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
358
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
359
360
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
361
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
362
363
364
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
365
366
Proof.
  revert l2. induction l1; intros [|??] H.
367
  * done.
368
369
  * discriminate (H 0).
  * discriminate (H 0).
370
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
371
Qed.
372
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
373
  Decision (l = k) := list_eq_dec dec.
374
375
376
377
378
379
380
381
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
382
Lemma nil_or_length_pos l : l = []  length l  0.
383
Proof. destruct l; simpl; auto with lia. Qed.
384
Lemma nil_length_inv l : length l = 0  l = [].
385
386
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
387
Proof. by destruct i. Qed.
388
Lemma lookup_tail l i : tail l !! i = l !! S i.
389
Proof. by destruct l. Qed.
390
391
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
392
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
393
394
395
396
397
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
398
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
399
400
401
402
403
404
405
406
407
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
408
409
410
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Proof.
412
413
414
415
416
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
Qed.
418
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
419
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
420
421
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
422
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
423
424
425
426
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
427
428
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
429
Proof. by rewrite lookup_app_r. Qed.
430
431
432
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
433
434
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
435
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
436
437
438
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
439

440
Lemma alter_length f l i : length (alter f i l) = length l.
441
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
442
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
443
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
444
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
445
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
447
Proof.
448
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
449
Qed.
450
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
451
452
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
453
Proof.
454
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
455
Qed.
456
457
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Proof.
459
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
461
462
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
463
464
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
465
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
466
Lemma alter_app_r f l1 l2 i :
467
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
468
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
469
470
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
471
472
473
474
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
475
476
477
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
478
479
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
480
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
481
482
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
483
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
484
485
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
486
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
487
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
488
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
489
490
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
491
492
493
494
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
495
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
496
Proof. induction l1; f_equal'; auto. Qed.
497

498
(** ** Properties of the [elem_of] predicate *)
499
Lemma not_elem_of_nil x : x  [].
500
Proof. by inversion 1. Qed.
501
Lemma elem_of_nil x : x  []  False.
502
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
503
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
504
Proof. destruct l. done. by edestruct 1; constructor. Qed.
505
506
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
507
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
508
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
509
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Proof. rewrite elem_of_cons. tauto. Qed.
511
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
512
Proof.
513
  induction l1.
514
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
515
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
516
Qed.
517
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Proof. rewrite elem_of_app. tauto. Qed.
519
Lemma elem_of_list_singleton x y : x  [y]  x = y.
520
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
522
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
523
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
524
Proof.
525
526
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
527
Qed.
528
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
529
Proof.
530
531
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
532
Qed.
533
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
534
Proof.
535
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
536
Qed.
537
538
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
539
540
541
542
543
544
545
546
547
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  * intros (x&Hx&?). induction Hx; csimpl; repeat case_match;
      simplify_equality; auto; constructor (by auto).
Qed.
548

549
(** ** Properties of the [NoDup] predicate *)
550
551
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
552
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
553
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
554
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
555
Proof. rewrite NoDup_cons. by intros [??]. Qed.
556
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
557
Proof. rewrite NoDup_cons. by intros [??]. Qed.
558
Lemma NoDup_singleton x : NoDup [x].
559
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
560
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
Proof.
562
  induction l; simpl.
563
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
564
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
Qed.
567
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
568
569
570
571
572
573
574
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
575
576
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
577
578
579
580
581
582
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
583
584
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
585
Proof.
586
587
588
589
590
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
591
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
592

593
594
595
596
597
598
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
599
    | x :: l =>
600
601
602
603
604
605
606
607
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
608
    end.
609
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
610
611
612
613
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
614
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
615
616
617
618
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
619
End no_dup_dec.
620

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

684
(** ** Properties of the [filter] function *)
685
686
687
688
689
690
691
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
692
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
693
694
695
696
697
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
698

699
700
701
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
702
703
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
704
  Proof.
705
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
706
707
708
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
709
710
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
711
712
713
714
715
716
717
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
718
719
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
720
721
722
723
724
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

725
(** ** Properties of the [reverse] function *)
726
727
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
728
Lemma reverse_singleton x : reverse [x] = [x].
729
Proof. done. Qed.
730
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
731
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
732
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
733
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
734
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
735
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
736
Lemma reverse_length l : length (reverse l) = length l.
737
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
738
Lemma reverse_involutive l : reverse (reverse l) = l.
739
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
755

756
757
758
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
759
760
761
762
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
763

764
765
766
767
768
769
770
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l<