fin_maps.v 67.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
Require Export prelude.relations prelude.vector prelude.orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
76
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 1 := λ m1 m2,
   i, m1 !! i  m2 !! i.

77
78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100
101
102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103
104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
111
112
113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114
115
116
117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
(** ** Setoids *)
Section setoid.
  Context `{Equiv A}.
  Global Instance map_equivalence `{!Equivalence (() : relation A)} :
    Equivalence (() : relation (M A)).
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) partial_alter.
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
    (() ==> () ==> ())%signature (merge f) (merge g).
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
    Proper ((() ==> () ==> ()) ==> () ==> () ==> ()) union_with.
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
    intros m1 m2; split.
    * by intros Hm; apply map_eq; intros i; unfold_leibniz; apply lookup_proper.
    * by intros <-; intros i; fold_leibniz.
  Qed.
End setoid.

(** ** General properties *)
173
174
175
176
177
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
179
180
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
181
Global Instance: EmptySpec (M A).
182
Proof.
183
184
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
185
Qed.
186
187
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  split; [intros m i; by destruct (m !! i); simpl|].
189
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
192
Qed.
193
Global Instance: PartialOrder (() : relation (M A)).
194
Proof.
195
196
197
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
198
199
200
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
201
Proof. rewrite !map_subseteq_spec. auto. Qed.
202
203
204
205
206
207
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
208
209
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
210
211
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
212
213
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
214
215
216
217
218
219
220
221
222
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
223
224
225
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
226
227

(** ** Properties of the [partial_alter] operation *)
228
229
230
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
231
232
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
233
234
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
235
236
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
237
238
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
239
Qed.
240
Lemma partial_alter_commute {A} f g (m : M A) i j :
241
  i  j  partial_alter f i (partial_alter g j m) =
242
243
    partial_alter g j (partial_alter f i m).
Proof.
244
245
246
247
248
249
250
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
251
252
253
254
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
255
256
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
257
Qed.
258
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
259
Proof. by apply partial_alter_self_alt. Qed.
260
Lemma partial_alter_subseteq {A} f (m : M A) i :
261
  m !! i = None  m  partial_alter f i m.
262
263
264
265
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
266
Lemma partial_alter_subset {A} f (m : M A) i :
267
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
268
Proof.
269
270
271
272
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
273
274
275
Qed.

(** ** Properties of the [alter] operation *)
276
277
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
278
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
279
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
280
Proof. unfold alter. apply lookup_partial_alter. Qed.
281
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
282
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
283
284
285
286
287
288
289
290
291
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
292
293
294
295
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
296
  destruct (decide (i = j)) as [->|?].
297
298
299
300
301
302
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
303
304
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
305
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
307
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
308
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
310
311
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
312
313
314
315
316
317
318
319
320
321
322
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
323
  * destruct (decide (i = j)) as [->|?];
324
325
326
327
328
329
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
330
331
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
332
333
334
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
335
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
336
337
338
339
340
341
342
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
343
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
344
Proof.
345
346
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
364
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
365
366
367
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
368
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
369
  m1  m2  delete i m1  delete i m2.
370
371
372
373
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
374
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
375
Proof.
376
377
378
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
379
Qed.
380
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
381
382
383
384
385
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
386
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
387
Proof. rewrite lookup_insert. congruence. Qed.
388
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
389
390
391
392
393
394
395
396
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
397
  * destruct (decide (i = j)) as [->|?];
398
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
399
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
400
401
402
403
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
404
405
406
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
407
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
409
410
411
412
413
414
415
416
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
417
418
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
419
Qed.
420
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
421
Proof. apply partial_alter_subseteq. Qed.
422
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
423
424
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
425
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
426
Proof.
427
428
429
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
430
431
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
432
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
433
Proof.
434
435
436
437
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
438
439
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
440
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
441
Proof.
442
443
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
444
  * rewrite lookup_insert. congruence.
445
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
446
447
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
448
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
449
Proof.
450
451
452
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
453
454
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  <[i:=x]> m1  m2 
456
457
458
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
459
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
460
461
462
463
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
464
465
466
467
468
469
470
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
471
472
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
473
474
475

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
476
  {[i, x]} !! j = Some y  i = j  x = y.
477
478
Proof.
  unfold singleton, map_singleton.
479
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
480
Qed.
481
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
482
483
484
485
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
486
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
487
Proof. by rewrite lookup_singleton_Some. Qed.
488
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
489
Proof. by rewrite lookup_singleton_None. Qed.
490
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
491
492
493
494
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
495
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
496
497
498
499
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
500
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
501
Proof.
502
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
503
504
505
506
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
507
  i  j  alter f i {[j,x]} = {[j,x]}.
508
Proof.
509
510
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
511
512
Qed.

513
514
515
516
517
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
518
519
520
521
522
523
524
Lemma omap_singleton {A B} (f : A  option B) i x y :
  f x = Some y  omap f {[ i,x ]} = {[ i,y ]}.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
525
526
527
528
529
530
531
532
533
534
535
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
536

537
538
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
539
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
540
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
541
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
542
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
543
544
545
546
547
548
549
550
551
552
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
553
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
554
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
555
Proof.
556
557
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
558
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
559
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
560
561
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
562
  map_of_list l !! i = Some x  (i,x)  l.
563
Proof.
564
565
566
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
567
568
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
569
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
570
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
571
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
572
  i  l.*1  map_of_list l !! i = None.
573
Proof.
574
575
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
576
577
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
578
  map_of_list l !! i = None  i  l.*1.
579
Proof.
580
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
581
582
583
584
585
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
586
  i  l.*1  map_of_list l !! i = None.
587
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
588
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
589
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
590
591
592
593
594
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
595
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
596
Proof.
597
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
598
599
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
600
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
601
602
603
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
604
    by auto using NoDup_fst_map_to_list.
605
606
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
607
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
608
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
609
Lemma map_to_list_inj {A} (m1 m2 : M A) :
610
  map_to_list m1  map_to_list m2  m1 = m2.
611
Proof.
612
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
613
  auto using map_of_list_proper, NoDup_fst_map_to_list.
614
Qed.
615
616
617
618
619
620
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
621
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
622
623
624
625
626
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
627
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
628
Proof.
629
  intros. apply map_of_list_inj; csimpl.
630
631
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
632
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
633
634
635
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
636
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
637
638
639
640
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
641
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
642
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
643
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
644
645
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
646
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
647
648
Proof.
  intros Hperm. apply map_to_list_inj.
649
650
651
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
652
653
654
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
655
656
657
658
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
659
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
660
Qed.
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
696
Lemma map_ind {A} (P : M A  Prop) :
697
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
698
Proof.
699
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
700
  { intros help m.
701
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
702
703
704
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
705
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
706
707
708
709
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
710
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
711
712
713
714
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
715
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
716
717
718
719
720
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
721
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
722
723
724
725
726
727
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

728
(** ** Properties of the [map_Forall] predicate *)
729
Section map_Forall.
730
731
Context {A} (P : K  A  Prop).

732
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
733
734
Proof.
  rewrite Forall_forall. split.
735
736
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
737
Qed.
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
Lemma map_Forall_empty : map_Forall P .
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K  A  Prop) m :
  map_Forall P m  ( i x, P i x  Q i x)  map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_11 m i x : map_Forall P (<[i:=x]>m)  P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_12 m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  map_Forall P m.
Proof.
  intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
  P i x  map_Forall P m  map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  P i x  map_Forall P m.
Proof.
  naive_solver eauto using map_Forall_insert_11,
    map_Forall_insert_12, map_Forall_insert_2.
Qed.
Lemma map_Forall_ind (Q : M A  Prop) :
  Q  
  ( m i x, m !! i = None  P i x  map_Forall P m  Q m  Q (<[i:=x]>m)) 
   m, map_Forall P m  Q m.
Proof.
  intros Hnil Hinsert m. induction m using map_ind; auto.
  rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.
767
768

Context `{ i x, Decision (P i x)}.
769
Global Instance map_Forall_dec m : Decision (map_Forall P m).
770
771
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
772
    by rewrite map_Forall_to_list.
773
Defined.
774
775
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
776
Proof.
777
778
779
  split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
  rewrite map_Forall_to_list. intros Hm.
  apply (not_Forall_Exists _), Exists_exists in Hm.
780
  destruct Hm as ([i x]&?&?). exists i, x. by rewrite <-elem_of_map_to_list.
781
Qed.
782
End map_Forall.
783
784
785
786

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).