Commit abd4de45 authored by Ralf Jung's avatar Ralf Jung

define logically atomic heap and instantiate it with physical heap

parent 75c98fae
......@@ -85,6 +85,7 @@ theories/heap_lang/lib/lock.v
From iris.heap_lang Require Export lifting notation.
From iris.base_logic.lib Require Export invariants.
From iris.program_logic Require Export atomic.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Import proofmode notation.
Set Default Proof Using "Type".
(** A general logically atomic interface for a heap. *)
Structure atomic_heap Σ `{!heapG Σ} := AtomicHeap {
(* -- operations -- *)
alloc : val;
load : val;
store : val;
(* -- predicates -- *)
(* name is used to associate locked with is_lock *)
mapsto (l : loc) (q: Qp) (v : val) : iProp Σ;
(* -- general properties -- *)
mapsto_timeless l q v : Timeless (mapsto l q v);
(* -- operation specs -- *)
alloc_spec v :
{{{ True }}} alloc v {{{ l, RET #l; mapsto l 1 v }}};
load_spec (l : loc) :
atomic_wp (load #l)%E
(λ '(v, q), mapsto l q v)
(λ '(v, q) (_:()), mapsto l q v)
(λ '(v, q) _, v);
store_spec (l : loc) (w : val) :
atomic_wp (store (#l, w))%E
(λ v, mapsto l 1 v)
(λ v (_:()), mapsto l 1 w)
(λ _ _, #()%V);
(** Proof that the primitive physical operations of heap_lang satisfy said interface. *)
Definition primitive_alloc : val :=
λ: "v", ref "v".
Definition primitive_load : val :=
λ: "l", !"l".
Definition primitive_store : val :=
λ: "p", (Fst "p") <- (Snd "p").
Section proof.
Context `{!heapG Σ}.
Lemma primitive_alloc_spec v :
{{{ True }}} primitive_alloc v {{{ l, RET #l; l v }}}.
iIntros (Φ) "_ HΦ". wp_let. wp_alloc l. iApply "HΦ". done.
Lemma primitive_load_spec (l : loc) :
atomic_wp (primitive_load #l)%E
(λ '(v, q), l {q} v)%I
(λ '(v, q) (_:()), l {q} v)%I
(λ '(v, q) _, v).
iIntros (Φ) "Aupd". wp_let.
iMod (aupd_acc with "Aupd") as ((v, q)) "[H↦ [_ Hclose]]"; first solve_ndisj.
wp_load. iMod ("Hclose" $! () with "H↦"). done.
Lemma primitive_store_spec (l : loc) (w : val) :
atomic_wp (primitive_store (#l, w))%E
(λ v, l v)%I
(λ v (_:()), l w)%I
(λ _ _, #()%V).
iIntros (Φ) "Aupd". wp_let. wp_proj. wp_proj.
iMod (aupd_acc with "Aupd") as (v) "[H↦ [_ Hclose]]"; first solve_ndisj.
wp_store. iMod ("Hclose" $! () with "H↦"). done.
Definition primitive_atomic_heap : atomic_heap Σ :=
{| alloc_spec := primitive_alloc_spec;
load_spec := primitive_load_spec;
store_spec := primitive_store_spec |}.
End proof.
From iris.program_logic Require Export weakestpre.
From iris.proofmode Require Import tactics classes.
From Require Import atomic.
From Require Export atomic.
Set Default Proof Using "Type".
Definition atomic_wp `{irisG Λ Σ} {A B : Type}
......@@ -13,4 +13,4 @@ Definition atomic_wp `{irisG Λ Σ} {A B : Type}
( Φ, atomic_update α β Eo Em (λ x y, Φ (f x y)) -
WP e {{ Φ }})%I.
(* Note: To add a private postcondition, use
atomic_shift α β Eo Em (λ x y, POST x y -∗ Φ (f x y)) *)
atomic_update α β Eo Em (λ x y, POST x y -∗ Φ (f x y)) *)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment