From program_logic Require Export pviewshifts. From program_logic Require Import wsat. Local Hint Extern 10 (_ ≤ _) => omega. Local Hint Extern 100 (@eq coPset _ _) => eassumption || set_solver. Local Hint Extern 100 (_ ∉ _) => set_solver. Local Hint Extern 100 (@subseteq coPset _ _ _) => set_solver. Local Hint Extern 10 (✓{_} _) => repeat match goal with | H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega end; solve_validN. Record wp_go {Λ Σ} (E : coPset) (Φ Φfork : expr Λ → nat → iRes Λ Σ → Prop) (k : nat) (rf : iRes Λ Σ) (e1 : expr Λ) (σ1 : state Λ) := { wf_safe : reducible e1 σ1; wp_step e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef → ∃ r2 r2', wsat k E σ2 (r2 ⋅ r2' ⋅ rf) ∧ Φ e2 k r2 ∧ ∀ e', ef = Some e' → Φfork e' k r2' }. CoInductive wp_pre {Λ Σ} (E : coPset) (Φ : val Λ → iProp Λ Σ) : expr Λ → nat → iRes Λ Σ → Prop := | wp_pre_value n r v : (|={E}=> Φ v)%I n r → wp_pre E Φ (of_val v) n r | wp_pre_step n r1 e1 : to_val e1 = None → (∀ rf k Ef σ1, 0 < k < n → E ∩ Ef = ∅ → wsat (S k) (E ∪ Ef) σ1 (r1 ⋅ rf) → wp_go (E ∪ Ef) (wp_pre E Φ) (wp_pre ⊤ (λ _, True%I)) k rf e1 σ1) → wp_pre E Φ e1 n r1. Program Definition wp_def {Λ Σ} (E : coPset) (e : expr Λ) (Φ : val Λ → iProp Λ Σ) : iProp Λ Σ := {| uPred_holds := wp_pre E Φ e |}. Next Obligation. intros Λ Σ E e Φ n r1 r2 Hwp Hr. destruct Hwp as [|n r1 e2 ? Hgo]; constructor; rewrite -?Hr; auto. intros rf k Ef σ1 ?; rewrite -(dist_le _ _ _ _ Hr); naive_solver. Qed. Next Obligation. intros Λ Σ E e Φ n1 n2 r1 r2; revert Φ E e n2 r1 r2. induction n1 as [n1 IH] using lt_wf_ind; intros Φ E e n2 r1 r1'. destruct 1 as [|n1 r1 e1 ? Hgo]. - constructor; eauto using uPred_weaken. - intros [rf' Hr] ??; constructor; [done|intros rf k Ef σ1 ???]. destruct (Hgo (rf' ⋅ rf) k Ef σ1) as [Hsafe Hstep]; rewrite ?assoc -?Hr; auto; constructor; [done|]. intros e2 σ2 ef ?; destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. exists r2, (r2' ⋅ rf'); split_and?; eauto 10 using (IH k), cmra_included_l. by rewrite -!assoc (assoc _ r2). Qed. (* Perform sealing. *) Definition wp_aux : { x | x = @wp_def }. by eexists. Qed. Definition wp := proj1_sig wp_aux. Definition wp_eq : @wp = @wp_def := proj2_sig wp_aux. Arguments wp {_ _} _ _ _. Instance: Params (@wp) 4. Notation "|| e @ E {{ Φ } }" := (wp E e Φ) (at level 20, e, Φ at level 200, format "|| e @ E {{ Φ } }") : uPred_scope. Notation "|| e {{ Φ } }" := (wp ⊤ e Φ) (at level 20, e, Φ at level 200, format "|| e {{ Φ } }") : uPred_scope. Section wp. Context {Λ : language} {Σ : iFunctor}. Implicit Types P : iProp Λ Σ. Implicit Types Φ : val Λ → iProp Λ Σ. Implicit Types v : val Λ. Implicit Types e : expr Λ. Transparent uPred_holds. Global Instance wp_ne E e n : Proper (pointwise_relation _ (dist n) ==> dist n) (@wp Λ Σ E e). Proof. cut (∀ Φ Ψ, (∀ v, Φ v ≡{n}≡ Ψ v) → ∀ n' r, n' ≤ n → ✓{n'} r → wp E e Φ n' r → wp E e Ψ n' r). { rewrite wp_eq. intros help Φ Ψ HΦΨ. by do 2 split; apply help. } rewrite wp_eq. intros Φ Ψ HΦΨ n' r; revert e r. induction n' as [n' IH] using lt_wf_ind=> e r. destruct 3 as [n' r v HpvsQ|n' r e1 ? Hgo]. { constructor. by eapply pvs_ne, HpvsQ; eauto. } constructor; [done|]=> rf k Ef σ1 ???. destruct (Hgo rf k Ef σ1) as [Hsafe Hstep]; auto. split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. exists r2, r2'; split_and?; [|eapply IH|]; eauto. Qed. Global Instance wp_proper E e : Proper (pointwise_relation _ (≡) ==> (≡)) (@wp Λ Σ E e). Proof. by intros Φ Φ' ?; apply equiv_dist=>n; apply wp_ne=>v; apply equiv_dist. Qed. Lemma wp_mask_frame_mono E1 E2 e Φ Ψ : E1 ⊆ E2 → (∀ v, Φ v ⊑ Ψ v) → || e @ E1 {{ Φ }} ⊑ || e @ E2 {{ Ψ }}. Proof. rewrite wp_eq. intros HE HΦ; split=> n r. revert e r; induction n as [n IH] using lt_wf_ind=> e r. destruct 2 as [n' r v HpvsQ|n' r e1 ? Hgo]. { constructor; eapply pvs_mask_frame_mono, HpvsQ; eauto. } constructor; [done|]=> rf k Ef σ1 ???. assert (E2 ∪ Ef = E1 ∪ (E2 ∖ E1 ∪ Ef)) as HE'. { by rewrite assoc_L -union_difference_L. } destruct (Hgo rf k ((E2 ∖ E1) ∪ Ef) σ1) as [Hsafe Hstep]; rewrite -?HE'; auto. split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. exists r2, r2'; split_and?; [rewrite HE'|eapply IH|]; eauto. Qed. Lemma wp_value_inv E Φ v n r : wp_def E (of_val v) Φ n r → pvs E E (Φ v) n r. Proof. by inversion 1 as [|??? He]; [|rewrite ?to_of_val in He]; simplify_eq. Qed. Lemma wp_step_inv E Ef Φ e k n σ r rf : to_val e = None → 0 < k < n → E ∩ Ef = ∅ → wp_def E e Φ n r → wsat (S k) (E ∪ Ef) σ (r ⋅ rf) → wp_go (E ∪ Ef) (λ e, wp_def E e Φ) (λ e, wp_def ⊤ e (λ _, True%I)) k rf e σ. Proof. intros He; destruct 3; [by rewrite ?to_of_val in He|eauto]. Qed. Lemma wp_value' E Φ v : Φ v ⊑ || of_val v @ E {{ Φ }}. Proof. rewrite wp_eq. split=> n r; constructor; by apply pvs_intro. Qed. Lemma pvs_wp E e Φ : (|={E}=> || e @ E {{ Φ }}) ⊑ || e @ E {{ Φ }}. Proof. rewrite wp_eq. split=> n r ? Hvs. destruct (to_val e) as [v|] eqn:He; [apply of_to_val in He; subst|]. { constructor; eapply pvs_trans', pvs_mono, Hvs; eauto. split=> ???; apply wp_value_inv. } constructor; [done|]=> rf k Ef σ1 ???. rewrite pvs_eq in Hvs. destruct (Hvs rf (S k) Ef σ1) as (r'&Hwp&?); auto. eapply wp_step_inv with (S k) r'; eauto. Qed. Lemma wp_pvs E e Φ : || e @ E {{ λ v, |={E}=> Φ v }} ⊑ || e @ E {{ Φ }}. Proof. rewrite wp_eq. split=> n r; revert e r; induction n as [n IH] using lt_wf_ind=> e r Hr HΦ. destruct (to_val e) as [v|] eqn:He; [apply of_to_val in He; subst|]. { constructor; apply pvs_trans', (wp_value_inv _ (pvs E E ∘ Φ)); auto. } constructor; [done|]=> rf k Ef σ1 ???. destruct (wp_step_inv E Ef (pvs E E ∘ Φ) e k n σ1 r rf) as [? Hstep]; auto. split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&Hwp'&?); auto. exists r2, r2'; split_and?; [|apply (IH k)|]; auto. Qed. Lemma wp_atomic E1 E2 e Φ : E2 ⊆ E1 → atomic e → (|={E1,E2}=> || e @ E2 {{ λ v, |={E2,E1}=> Φ v }}) ⊑ || e @ E1 {{ Φ }}. Proof. rewrite wp_eq pvs_eq. intros ? He; split=> n r ? Hvs; constructor. eauto using atomic_not_val. intros rf k Ef σ1 ???. destruct (Hvs rf (S k) Ef σ1) as (r'&Hwp&?); auto. destruct (wp_step_inv E2 Ef (pvs_def E2 E1 ∘ Φ) e k (S k) σ1 r' rf) as [Hsafe Hstep]; auto using atomic_not_val; []. split; [done|]=> e2 σ2 ef ?. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&Hwp'&?); clear Hsafe Hstep; auto. destruct Hwp' as [k r2 v Hvs'|k r2 e2 Hgo]; [|destruct (atomic_step e σ1 e2 σ2 ef); naive_solver]. rewrite -pvs_eq in Hvs'. apply pvs_trans in Hvs';auto. rewrite pvs_eq in Hvs'. destruct (Hvs' (r2' ⋅ rf) k Ef σ2) as (r3&[]); rewrite ?assoc; auto. exists r3, r2'; split_and?; last done. - by rewrite -assoc. - constructor; apply pvs_intro; auto. Qed. Lemma wp_frame_r E e Φ R : (|| e @ E {{ Φ }} ★ R) ⊑ || e @ E {{ λ v, Φ v ★ R }}. Proof. rewrite wp_eq. uPred.unseal; split; intros n r' Hvalid (r&rR&Hr&Hwp&?). revert Hvalid. rewrite Hr; clear Hr; revert e r Hwp. induction n as [n IH] using lt_wf_ind; intros e r1. destruct 1 as [|n r e ? Hgo]=>?. { constructor. rewrite -uPred_sep_eq; apply pvs_frame_r; auto. uPred.unseal; exists r, rR; eauto. } constructor; [done|]=> rf k Ef σ1 ???. destruct (Hgo (rR⋅rf) k Ef σ1) as [Hsafe Hstep]; auto. { by rewrite assoc. } split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. exists (r2 ⋅ rR), r2'; split_and?; auto. - by rewrite -(assoc _ r2) (comm _ rR) !assoc -(assoc _ _ rR). - apply IH; eauto using uPred_weaken. Qed. Lemma wp_frame_later_r E e Φ R : to_val e = None → (|| e @ E {{ Φ }} ★ ▷ R) ⊑ || e @ E {{ λ v, Φ v ★ R }}. Proof. rewrite wp_eq. intros He; uPred.unseal; split; intros n r' Hvalid (r&rR&Hr&Hwp&?). revert Hvalid; rewrite Hr; clear Hr. destruct Hwp as [|n r e ? Hgo]; [by rewrite to_of_val in He|]. constructor; [done|]=>rf k Ef σ1 ???; destruct n as [|n]; first omega. destruct (Hgo (rR⋅rf) k Ef σ1) as [Hsafe Hstep];rewrite ?assoc;auto. split; [done|intros e2 σ2 ef ?]. destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. exists (r2 ⋅ rR), r2'; split_and?; auto. - by rewrite -(assoc _ r2) (comm _ rR) !assoc -(assoc _ _ rR). - rewrite -uPred_sep_eq. move:(wp_frame_r). rewrite wp_eq=>Hframe. apply Hframe; [auto|uPred.unseal; exists r2, rR; split_and?; auto]. eapply uPred_weaken with n rR; eauto. Qed. Lemma wp_bind `{LanguageCtx Λ K} E e Φ : || e @ E {{ λ v, || K (of_val v) @ E {{ Φ }} }} ⊑ || K e @ E {{ Φ }}. Proof. rewrite wp_eq. split=> n r; revert e r; induction n as [n IH] using lt_wf_ind=> e r ?. destruct 1 as [|n r e ? Hgo]. { rewrite -wp_eq. apply pvs_wp; rewrite ?wp_eq; done. } constructor; auto using fill_not_val=> rf k Ef σ1 ???. destruct (Hgo rf k Ef σ1) as [Hsafe Hstep]; auto. split. { destruct Hsafe as (e2&σ2&ef&?). by exists (K e2), σ2, ef; apply fill_step. } intros e2 σ2 ef ?. destruct (fill_step_inv e σ1 e2 σ2 ef) as (e2'&->&?); auto. destruct (Hstep e2' σ2 ef) as (r2&r2'&?&?&?); auto. exists r2, r2'; split_and?; try eapply IH; eauto. Qed. (** * Derived rules *) Opaque uPred_holds. Import uPred. Lemma wp_mono E e Φ Ψ : (∀ v, Φ v ⊑ Ψ v) → || e @ E {{ Φ }} ⊑ || e @ E {{ Ψ }}. Proof. by apply wp_mask_frame_mono. Qed. Global Instance wp_mono' E e : Proper (pointwise_relation _ (⊑) ==> (⊑)) (@wp Λ Σ E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. Lemma wp_strip_pvs E e P Φ : P ⊑ || e @ E {{ Φ }} → (|={E}=> P) ⊑ || e @ E {{ Φ }}. Proof. move=>->. by rewrite pvs_wp. Qed. Lemma wp_value E Φ e v : to_val e = Some v → Φ v ⊑ || e @ E {{ Φ }}. Proof. intros; rewrite -(of_to_val e v) //; by apply wp_value'. Qed. Lemma wp_value_pvs E Φ e v : to_val e = Some v → (|={E}=> Φ v) ⊑ || e @ E {{ Φ }}. Proof. intros. rewrite -wp_pvs. rewrite -wp_value //. Qed. Lemma wp_frame_l E e Φ R : (R ★ || e @ E {{ Φ }}) ⊑ || e @ E {{ λ v, R ★ Φ v }}. Proof. setoid_rewrite (comm _ R); apply wp_frame_r. Qed. Lemma wp_frame_later_l E e Φ R : to_val e = None → (▷ R ★ || e @ E {{ Φ }}) ⊑ || e @ E {{ λ v, R ★ Φ v }}. Proof. rewrite (comm _ (▷ R)%I); setoid_rewrite (comm _ R). apply wp_frame_later_r. Qed. Lemma wp_always_l E e Φ R `{!AlwaysStable R} : (R ∧ || e @ E {{ Φ }}) ⊑ || e @ E {{ λ v, R ∧ Φ v }}. Proof. by setoid_rewrite (always_and_sep_l _ _); rewrite wp_frame_l. Qed. Lemma wp_always_r E e Φ R `{!AlwaysStable R} : (|| e @ E {{ Φ }} ∧ R) ⊑ || e @ E {{ λ v, Φ v ∧ R }}. Proof. by setoid_rewrite (always_and_sep_r _ _); rewrite wp_frame_r. Qed. Lemma wp_impl_l E e Φ Ψ : ((□ ∀ v, Φ v → Ψ v) ∧ || e @ E {{ Φ }}) ⊑ || e @ E {{ Ψ }}. Proof. rewrite wp_always_l; apply wp_mono=> // v. by rewrite always_elim (forall_elim v) impl_elim_l. Qed. Lemma wp_impl_r E e Φ Ψ : (|| e @ E {{ Φ }} ∧ □ (∀ v, Φ v → Ψ v)) ⊑ || e @ E {{ Ψ }}. Proof. by rewrite comm wp_impl_l. Qed. Lemma wp_mask_weaken E1 E2 e Φ : E1 ⊆ E2 → || e @ E1 {{ Φ }} ⊑ || e @ E2 {{ Φ }}. Proof. auto using wp_mask_frame_mono. Qed. (** * Weakest-pre is a FSA. *) Definition wp_fsa (e : expr Λ) : FSA Λ Σ (val Λ) := λ E, wp E e. Global Arguments wp_fsa _ _ / _. Global Instance wp_fsa_prf : FrameShiftAssertion (atomic e) (wp_fsa e). Proof. rewrite /wp_fsa; split; auto using wp_mask_frame_mono, wp_atomic, wp_frame_r. intros E Φ. by rewrite -(pvs_wp E e Φ) -(wp_pvs E e Φ). Qed. End wp.