Require Export program_logic.weakestpre. Require Import program_logic.wsat program_logic.ownership. Local Hint Extern 10 (_ ≤ _) => omega. Local Hint Extern 100 (@eq coPset _ _) => solve_elem_of. Local Hint Extern 10 (✓{_} _) => repeat match goal with H : wsat _ _ _ _ |- _ => apply wsat_valid in H end; solve_validN. Section lifting. Context {Λ : language} {Σ : iFunctor}. Implicit Types v : val Λ. Implicit Types e : expr Λ. Implicit Types σ : state Λ. Implicit Types Q : val Λ → iProp Λ Σ. Transparent uPred_holds. Notation wp_fork ef := (default True ef (flip (wp coPset_all) (λ _, True)))%I. Lemma wp_lift_step E1 E2 (φ : expr Λ → state Λ → option (expr Λ) → Prop) Q e1 σ1 : E1 ⊆ E2 → to_val e1 = None → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → pvs E2 E1 (ownP σ1 ★ ▷ ∀ e2 σ2 ef, (■ φ e2 σ2 ef ∧ ownP σ2) -★ pvs E1 E2 (wp E2 e2 Q ★ wp_fork ef)) ⊑ wp E2 e1 Q. Proof. intros ? He Hsafe Hstep r n ? Hvs; constructor; auto. intros rf k Ef σ1' ???; destruct (Hvs rf (S k) Ef σ1') as (r'&(r1&r2&?&?&Hwp)&Hws); auto; clear Hvs; cofe_subst r'. destruct (wsat_update_pst k (E1 ∪ Ef) σ1 σ1' r1 (r2 ⋅ rf)) as [-> Hws']. { by apply ownP_spec; auto. } { by rewrite (associative _). } constructor; [done|intros e2 σ2 ef ?; specialize (Hws' σ2)]. destruct (λ H1 H2 H3, Hwp e2 σ2 ef (update_pst σ2 r1) k H1 H2 H3 rf k Ef σ2) as (r'&(r1'&r2'&?&?&?)&?); auto; cofe_subst r'. { split. destruct k; try eapply Hstep; eauto. apply ownP_spec; auto. } { rewrite (commutative _ r2) -(associative _); eauto using wsat_le. } by exists r1', r2'; split_ands; [| |by intros ? ->]. Qed. Lemma wp_lift_pure_step E (φ : expr Λ → option (expr Λ) → Prop) Q e1 : to_val e1 = None → (∀ σ1, reducible e1 σ1) → (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) → (▷ ∀ e2 ef, ■ φ e2 ef → wp E e2 Q ★ wp_fork ef) ⊑ wp E e1 Q. Proof. intros He Hsafe Hstep r [|n] ?; [done|]; intros Hwp; constructor; auto. intros rf k Ef σ1 ???; split; [done|]. intros e2 σ2 ef ?; destruct (Hstep σ1 e2 σ2 ef); auto; subst. destruct (Hwp e2 ef r k) as (r1&r2&Hr&?&?); auto; [by destruct k|]. exists r1,r2; split_ands; [rewrite -Hr| |by intros ? ->]; eauto using wsat_le. Qed. (** Derived lifting lemmas. *) Opaque uPred_holds. Import uPred. Lemma wp_lift_atomic_step {E Q} e1 (φ : val Λ → state Λ → option (expr Λ) → Prop) σ1 : to_val e1 = None → reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → ∃ v2, to_val e2 = Some v2 ∧ φ v2 σ2 ef) → (ownP σ1 ★ ▷ ∀ v2 σ2 ef, ■ φ v2 σ2 ef ∧ ownP σ2 -★ Q v2 ★ wp_fork ef) ⊑ wp E e1 Q. Proof. intros. rewrite -(wp_lift_step E E (λ e2 σ2 ef, ∃ v2, to_val e2 = Some v2 ∧ φ v2 σ2 ef) _ e1 σ1) //; []. rewrite -pvs_intro. apply sep_mono, later_mono; first done. apply forall_intro=>e2'; apply forall_intro=>σ2'. apply forall_intro=>ef; apply wand_intro_l. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l=>-[v2' [Hv ?]] /=. rewrite -pvs_intro. rewrite (forall_elim v2') (forall_elim σ2') (forall_elim ef) const_equiv //. by rewrite left_id wand_elim_r -(wp_value' _ _ e2' v2'). Qed. Lemma wp_lift_atomic_det_step {E Q e1} σ1 v2 σ2 ef : to_val e1 = None → reducible e1 σ1 → (∀ e2' σ2' ef', prim_step e1 σ1 e2' σ2' ef' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') → (ownP σ1 ★ ▷ (ownP σ2 -★ Q v2 ★ wp_fork ef)) ⊑ wp E e1 Q. Proof. intros. rewrite -(wp_lift_atomic_step _ (λ v2' σ2' ef', σ2 = σ2' ∧ v2 = v2' ∧ ef = ef') σ1) //; last naive_solver. apply sep_mono, later_mono; first done. apply forall_intro=>e2'; apply forall_intro=>σ2'; apply forall_intro=>ef'. apply wand_intro_l. rewrite always_and_sep_l' -associative -always_and_sep_l'. apply const_elim_l=>-[-> [-> ->]] /=. by rewrite wand_elim_r. Qed. Lemma wp_lift_pure_det_step {E Q} e1 e2 ef : to_val e1 = None → (∀ σ1, reducible e1 σ1) → (∀ σ1 e2' σ2 ef', prim_step e1 σ1 e2' σ2 ef' → σ1 = σ2 ∧ e2 = e2' ∧ ef = ef')→ ▷ (wp E e2 Q ★ wp_fork ef) ⊑ wp E e1 Q. Proof. intros. rewrite -(wp_lift_pure_step E (λ e2' ef', e2 = e2' ∧ ef = ef') _ e1) //=. apply later_mono, forall_intro=>e'; apply forall_intro=>ef'. by apply impl_intro_l, const_elim_l=>-[-> ->]. Qed. End lifting.