Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
e5fcec8f
Commit
e5fcec8f
authored
Feb 10, 2016
by
Robbert Krebbers
Browse files
Remove let as a built-in and make it syntactic sugar again.
parent
0b7e25c2
Changes
3
Hide whitespace changes
Inline
Side-by-side
heap_lang/heap_lang.v
View file @
e5fcec8f
...
...
@@ -19,8 +19,6 @@ Inductive expr :=
|
Var
(
x
:
string
)
|
Rec
(
f
x
:
string
)
(
e
:
expr
)
|
App
(
e1
e2
:
expr
)
(* Let *)
|
Let
(
x
:
string
)
(
e1
e2
:
expr
)
(* Base types and their operations *)
|
Lit
(
l
:
base_lit
)
|
UnOp
(
op
:
un_op
)
(
e
:
expr
)
...
...
@@ -78,7 +76,6 @@ Definition state := gmap loc val.
Inductive
ectx_item
:
=
|
AppLCtx
(
e2
:
expr
)
|
AppRCtx
(
v1
:
val
)
|
LetCtx
(
x
:
string
)
(
e2
:
expr
)
|
UnOpCtx
(
op
:
un_op
)
|
BinOpLCtx
(
op
:
bin_op
)
(
e2
:
expr
)
|
BinOpRCtx
(
op
:
bin_op
)
(
v1
:
val
)
...
...
@@ -104,7 +101,6 @@ Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
match
Ki
with
|
AppLCtx
e2
=>
App
e
e2
|
AppRCtx
v1
=>
App
(
of_val
v1
)
e
|
LetCtx
x
e2
=>
Let
x
e
e2
|
UnOpCtx
op
=>
UnOp
op
e
|
BinOpLCtx
op
e2
=>
BinOp
op
e
e2
|
BinOpRCtx
op
v1
=>
BinOp
op
(
of_val
v1
)
e
...
...
@@ -133,8 +129,6 @@ Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
|
Var
y
=>
if
decide
(
x
=
y
∧
x
≠
""
)
then
of_val
v
else
Var
y
|
Rec
f
y
e
=>
Rec
f
y
(
if
decide
(
x
≠
f
∧
x
≠
y
)
then
subst
e
x
v
else
e
)
|
App
e1
e2
=>
App
(
subst
e1
x
v
)
(
subst
e2
x
v
)
|
Let
y
e1
e2
=>
Let
y
(
subst
e1
x
v
)
(
if
decide
(
x
≠
y
)
then
subst
e2
x
v
else
e2
)
|
Lit
l
=>
Lit
l
|
UnOp
op
e
=>
UnOp
op
(
subst
e
x
v
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
subst
e1
x
v
)
(
subst
e2
x
v
)
...
...
@@ -178,9 +172,6 @@ Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
to_val
e2
=
Some
v2
→
head_step
(
App
(
Rec
f
x
e1
)
e2
)
σ
(
subst
(
subst
e1
f
(
RecV
f
x
e1
))
x
v2
)
σ
None
|
DeltaS
x
e1
e2
v1
σ
:
to_val
e1
=
Some
v1
→
head_step
(
Let
x
e1
e2
)
σ
(
subst
e2
x
v1
)
σ
None
|
UnOpS
op
l
l'
σ
:
un_op_eval
op
l
=
Some
l'
→
head_step
(
UnOp
op
(
Lit
l
))
σ
(
Lit
l'
)
σ
None
...
...
heap_lang/lifting.v
View file @
e5fcec8f
...
...
@@ -90,14 +90,6 @@ Proof.
last
by
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
intros
.
rewrite
-(
wp_lift_pure_det_step
(
Let
_
_
_
)
(
subst
e2
x
v
)
None
)
?right_id
//=
;
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_un_op
E
op
l
l'
Q
:
un_op_eval
op
l
=
Some
l'
→
▷
Q
(
LitV
l'
)
⊑
wp
E
(
UnOp
op
(
Lit
l
))
Q
.
...
...
heap_lang/sugar.v
View file @
e5fcec8f
...
...
@@ -3,8 +3,10 @@ Import uPred heap_lang.
(** Define some syntactic sugar. LitTrue and LitFalse are defined in heap_lang.v. *)
Notation
Lam
x
e
:
=
(
Rec
""
x
e
).
Notation
Let
x
e1
e2
:
=
(
App
(
Lam
x
e2
)
e1
).
Notation
Seq
e1
e2
:
=
(
Let
""
e1
e2
).
Notation
LamV
x
e
:
=
(
RecV
""
x
e
).
Notation
LetCtx
x
e2
:
=
(
AppRCtx
(
LamV
x
e2
)).
Notation
SeqCtx
e2
:
=
(
LetCtx
""
e2
).
Module
notations
.
...
...
@@ -14,7 +16,7 @@ Module notations.
Coercion
LitNat
:
nat
>->
base_lit
.
Coercion
LitBool
:
bool
>->
base_lit
.
(* No coercion from base_lit to expr. This makes is slightly easier to tell
(*
*
No coercion from base_lit to expr. This makes is slightly easier to tell
apart language and Coq expressions. *)
Coercion
Var
:
string
>->
expr
.
Coercion
App
:
expr
>->
Funclass
.
...
...
@@ -33,18 +35,21 @@ Module notations.
Notation
"e1 = e2"
:
=
(
BinOp
EqOp
e1
%
L
e2
%
L
)
(
at
level
70
)
:
lang_scope
.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation
"e1 <- e2"
:
=
(
Store
e1
%
L
e2
%
L
)
(
at
level
80
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:
=
(
Let
x
e1
%
L
e2
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
at
level
1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:
=
(
Seq
e1
%
L
e2
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
Notation
"'rec:' f x := e"
:
=
(
Rec
f
x
e
%
L
)
(
at
level
102
,
f
at
level
1
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'if' e1 'then' e2 'else' e3"
:
=
(
If
e1
%
L
e2
%
L
e3
%
L
)
(
at
level
200
,
e1
,
e2
,
e3
at
level
200
)
:
lang_scope
.
(* derived notions, in order of declaration *)
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation
"λ: x , e"
:
=
(
Lam
x
e
%
L
)
(
at
level
102
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:
=
(
Lam
x
e2
%
L
e1
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
at
level
1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:
=
(
Lam
""
e2
%
L
e1
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
End
notations
.
Section
suger
.
...
...
@@ -57,6 +62,10 @@ Lemma wp_lam E x ef e v Q :
to_val
e
=
Some
v
→
▷
wp
E
(
subst
ef
x
v
)
Q
⊑
wp
E
(
App
(
Lam
x
ef
)
e
)
Q
.
Proof
.
intros
.
by
rewrite
-
wp_rec
?subst_empty
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
apply
wp_lam
.
Qed
.
Lemma
wp_seq
E
e1
e2
Q
:
wp
E
e1
(
λ
_
,
▷
wp
E
e2
Q
)
⊑
wp
E
(
Seq
e1
e2
)
Q
.
Proof
.
rewrite
-(
wp_bind
[
LetCtx
""
e2
]).
apply
wp_mono
=>
v
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment