Commit cec05125 by Robbert Krebbers

### Rename `iprod` into `ofe_fun`.

parent c93ee508
 ... @@ -14,7 +14,7 @@ theories/algebra/dra.v ... @@ -14,7 +14,7 @@ theories/algebra/dra.v theories/algebra/cofe_solver.v theories/algebra/cofe_solver.v theories/algebra/agree.v theories/algebra/agree.v theories/algebra/excl.v theories/algebra/excl.v theories/algebra/iprod.v theories/algebra/functions.v theories/algebra/frac.v theories/algebra/frac.v theories/algebra/csum.v theories/algebra/csum.v theories/algebra/list.v theories/algebra/list.v ... ...
 ... @@ -1465,41 +1465,41 @@ Proof. ... @@ -1465,41 +1465,41 @@ Proof. Qed. Qed. (* Dependently-typed functions *) (* Dependently-typed functions *) Section iprod_cmra. Section ofe_fun_cmra. Context `{Hfin : Finite A} {B : A → ucmraT}. Context `{Hfin : Finite A} {B : A → ucmraT}. Implicit Types f g : iprod B. Implicit Types f g : ofe_fun B. Instance iprod_op : Op (iprod B) := λ f g x, f x ⋅ g x. Instance ofe_fun_op : Op (ofe_fun B) := λ f g x, f x ⋅ g x. Instance iprod_pcore : PCore (iprod B) := λ f, Some (λ x, core (f x)). Instance ofe_fun_pcore : PCore (ofe_fun B) := λ f, Some (λ x, core (f x)). Instance iprod_valid : Valid (iprod B) := λ f, ∀ x, ✓ f x. Instance ofe_fun_valid : Valid (ofe_fun B) := λ f, ∀ x, ✓ f x. Instance iprod_validN : ValidN (iprod B) := λ n f, ∀ x, ✓{n} f x. Instance ofe_fun_validN : ValidN (ofe_fun B) := λ n f, ∀ x, ✓{n} f x. Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. Definition ofe_fun_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. Definition iprod_lookup_core f x : (core f) x = core (f x) := eq_refl. Definition ofe_fun_lookup_core f x : (core f) x = core (f x) := eq_refl. Lemma iprod_included_spec (f g : iprod B) : f ≼ g ↔ ∀ x, f x ≼ g x. Lemma ofe_fun_included_spec (f g : ofe_fun B) : f ≼ g ↔ ∀ x, f x ≼ g x. Proof using Hfin. Proof using Hfin. split; [by intros [h Hh] x; exists (h x); rewrite /op /iprod_op (Hh x)|]. split; [by intros [h Hh] x; exists (h x); rewrite /op /ofe_fun_op (Hh x)|]. intros [h ?]%finite_choice. by exists h. intros [h ?]%finite_choice. by exists h. Qed. Qed. Lemma iprod_cmra_mixin : CmraMixin (iprod B). Lemma ofe_fun_cmra_mixin : CmraMixin (ofe_fun B). Proof using Hfin. Proof using Hfin. apply cmra_total_mixin. apply cmra_total_mixin. - eauto. - eauto. - by intros n f1 f2 f3 Hf x; rewrite iprod_lookup_op (Hf x). - by intros n f1 f2 f3 Hf x; rewrite ofe_fun_lookup_op (Hf x). - by intros n f1 f2 Hf x; rewrite iprod_lookup_core (Hf x). - by intros n f1 f2 Hf x; rewrite ofe_fun_lookup_core (Hf x). - by intros n f1 f2 Hf ? x; rewrite -(Hf x). - by intros n f1 f2 Hf ? x; rewrite -(Hf x). - intros g; split. - intros g; split. + intros Hg n i; apply cmra_valid_validN, Hg. + intros Hg n i; apply cmra_valid_validN, Hg. + intros Hg i; apply cmra_valid_validN=> n; apply Hg. + intros Hg i; apply cmra_valid_validN=> n; apply Hg. - intros n f Hf x; apply cmra_validN_S, Hf. - intros n f Hf x; apply cmra_validN_S, Hf. - by intros f1 f2 f3 x; rewrite iprod_lookup_op assoc. - by intros f1 f2 f3 x; rewrite ofe_fun_lookup_op assoc. - by intros f1 f2 x; rewrite iprod_lookup_op comm. - by intros f1 f2 x; rewrite ofe_fun_lookup_op comm. - by intros f x; rewrite iprod_lookup_op iprod_lookup_core cmra_core_l. - by intros f x; rewrite ofe_fun_lookup_op ofe_fun_lookup_core cmra_core_l. - by intros f x; rewrite iprod_lookup_core cmra_core_idemp. - by intros f x; rewrite ofe_fun_lookup_core cmra_core_idemp. - intros f1 f2; rewrite !iprod_included_spec=> Hf x. - intros f1 f2; rewrite !ofe_fun_included_spec=> Hf x. by rewrite iprod_lookup_core; apply cmra_core_mono, Hf. by rewrite ofe_fun_lookup_core; apply cmra_core_mono, Hf. - intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf. - intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf. - intros n f f1 f2 Hf Hf12. - intros n f f1 f2 Hf Hf12. destruct (finite_choice (λ x (yy : B x * B x), destruct (finite_choice (λ x (yy : B x * B x), ... @@ -1509,57 +1509,57 @@ Section iprod_cmra. ... @@ -1509,57 +1509,57 @@ Section iprod_cmra. exists (y1,y2); eauto. } exists (y1,y2); eauto. } exists (λ x, gg x.1), (λ x, gg x.2). split_and!=> -?; naive_solver. exists (λ x, gg x.1), (λ x, gg x.2). split_and!=> -?; naive_solver. Qed. Qed. Canonical Structure iprodR := CmraT (iprod B) iprod_cmra_mixin. Canonical Structure ofe_funR := CmraT (ofe_fun B) ofe_fun_cmra_mixin. Instance iprod_unit : Unit (iprod B) := λ x, ε. Instance ofe_fun_unit : Unit (ofe_fun B) := λ x, ε. Definition iprod_lookup_empty x : ε x = ε := eq_refl. Definition ofe_fun_lookup_empty x : ε x = ε := eq_refl. Lemma iprod_ucmra_mixin : UcmraMixin (iprod B). Lemma ofe_fun_ucmra_mixin : UcmraMixin (ofe_fun B). Proof. Proof. split. split. - intros x; apply ucmra_unit_valid. - intros x; apply ucmra_unit_valid. - by intros f x; rewrite iprod_lookup_op left_id. - by intros f x; rewrite ofe_fun_lookup_op left_id. - constructor=> x. apply core_id_core, _. - constructor=> x. apply core_id_core, _. Qed. Qed. Canonical Structure iprodUR := UcmraT (iprod B) iprod_ucmra_mixin. Canonical Structure ofe_funUR := UcmraT (ofe_fun B) ofe_fun_ucmra_mixin. Global Instance iprod_unit_discrete : Global Instance ofe_fun_unit_discrete : (∀ i, Discrete (ε : B i)) → Discrete (ε : iprod B). (∀ i, Discrete (ε : B i)) → Discrete (ε : ofe_fun B). Proof. intros ? f Hf x. by apply: discrete. Qed. Proof. intros ? f Hf x. by apply: discrete. Qed. End iprod_cmra. End ofe_fun_cmra. Arguments iprodR {_ _ _} _. Arguments ofe_funR {_ _ _} _. Arguments iprodUR {_ _ _} _. Arguments ofe_funUR {_ _ _} _. Instance iprod_map_cmra_morphism Instance ofe_fun_map_cmra_morphism `{Finite A} {B1 B2 : A → ucmraT} (f : ∀ x, B1 x → B2 x) : `{Finite A} {B1 B2 : A → ucmraT} (f : ∀ x, B1 x → B2 x) : (∀ x, CmraMorphism (f x)) → CmraMorphism (iprod_map f). (∀ x, CmraMorphism (f x)) → CmraMorphism (ofe_fun_map f). Proof. Proof. split; first apply _. split; first apply _. - intros n g Hg x; rewrite /iprod_map; apply (cmra_morphism_validN (f _)), Hg. - intros n g Hg x; rewrite /ofe_fun_map; apply (cmra_morphism_validN (f _)), Hg. - intros. apply Some_proper=>i. apply (cmra_morphism_core (f i)). - intros. apply Some_proper=>i. apply (cmra_morphism_core (f i)). - intros g1 g2 i. by rewrite /iprod_map iprod_lookup_op cmra_morphism_op. - intros g1 g2 i. by rewrite /ofe_fun_map ofe_fun_lookup_op cmra_morphism_op. Qed. Qed. Program Definition iprodURF `{Finite C} (F : C → urFunctor) : urFunctor := {| Program Definition ofe_funURF `{Finite C} (F : C → urFunctor) : urFunctor := {| urFunctor_car A B := iprodUR (λ c, urFunctor_car (F c) A B); urFunctor_car A B := ofe_funUR (λ c, urFunctor_car (F c) A B); urFunctor_map A1 A2 B1 B2 fg := iprodC_map (λ c, urFunctor_map (F c) fg) urFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (λ c, urFunctor_map (F c) fg) |}. |}. Next Obligation. Next Obligation. intros C ?? F A1 A2 B1 B2 n ?? g. intros C ?? F A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>?; apply urFunctor_ne. by apply ofe_funC_map_ne=>?; apply urFunctor_ne. Qed. Qed. Next Obligation. Next Obligation. intros C ?? F A B g; simpl. rewrite -{2}(iprod_map_id g). intros C ?? F A B g; simpl. rewrite -{2}(ofe_fun_map_id g). apply iprod_map_ext=> y; apply urFunctor_id. apply ofe_fun_map_ext=> y; apply urFunctor_id. Qed. Qed. Next Obligation. Next Obligation. intros C ?? F A1 A2 A3 B1 B2 B3 f1 f2 f1' f2' g. rewrite /=-iprod_map_compose. intros C ?? F A1 A2 A3 B1 B2 B3 f1 f2 f1' f2' g. rewrite /=-ofe_fun_map_compose. apply iprod_map_ext=>y; apply urFunctor_compose. apply ofe_fun_map_ext=>y; apply urFunctor_compose. Qed. Qed. Instance iprodURF_contractive `{Finite C} (F : C → urFunctor) : Instance ofe_funURF_contractive `{Finite C} (F : C → urFunctor) : (∀ c, urFunctorContractive (F c)) → urFunctorContractive (iprodURF F). (∀ c, urFunctorContractive (F c)) → urFunctorContractive (ofe_funURF F). Proof. Proof. intros ? A1 A2 B1 B2 n ?? g. intros ? A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>c; apply urFunctor_contractive. by apply ofe_funC_map_ne=>c; apply urFunctor_contractive. Qed. Qed.
 From iris.algebra Require Export cmra. From iris.algebra Require Import updates. From stdpp Require Import finite. Set Default Proof Using "Type". Definition ofe_fun_insert `{EqDecision A} {B : A → ofeT} (x : A) (y : B x) (f : ofe_fun B) : ofe_fun B := λ x', match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. Instance: Params (@ofe_fun_insert) 5. Definition ofe_fun_singleton `{Finite A} {B : A → ucmraT} (x : A) (y : B x) : ofe_fun B := ofe_fun_insert x y ε. Instance: Params (@ofe_fun_singleton) 5. Section ofe. Context `{Heqdec : EqDecision A} {B : A → ofeT}. Implicit Types x : A. Implicit Types f g : ofe_fun B. (** Properties of ofe_fun_insert. *) Global Instance ofe_fun_insert_ne x : NonExpansive2 (ofe_fun_insert (B:=B) x). Proof. intros n y1 y2 ? f1 f2 ? x'; rewrite /ofe_fun_insert. by destruct (decide _) as [[]|]. Qed. Global Instance ofe_fun_insert_proper x : Proper ((≡) ==> (≡) ==> (≡)) (ofe_fun_insert x) := ne_proper_2 _. Lemma ofe_fun_lookup_insert f x y : (ofe_fun_insert x y f) x = y. Proof. rewrite /ofe_fun_insert; destruct (decide _) as [Hx|]; last done. by rewrite (proof_irrel Hx eq_refl). Qed. Lemma ofe_fun_lookup_insert_ne f x x' y : x ≠ x' → (ofe_fun_insert x y f) x' = f x'. Proof. by rewrite /ofe_fun_insert; destruct (decide _). Qed. Global Instance ofe_fun_insert_discrete f x y : Discrete f → Discrete y → Discrete (ofe_fun_insert x y f). Proof. intros ?? g Heq x'; destruct (decide (x = x')) as [->|]. - rewrite ofe_fun_lookup_insert. apply: discrete. by rewrite -(Heq x') ofe_fun_lookup_insert. - rewrite ofe_fun_lookup_insert_ne //. apply: discrete. by rewrite -(Heq x') ofe_fun_lookup_insert_ne. Qed. End ofe. Section cmra. Context `{Finite A} {B : A → ucmraT}. Implicit Types x : A. Implicit Types f g : ofe_fun B. Global Instance ofe_fun_singleton_ne x : NonExpansive (ofe_fun_singleton x : B x → _). Proof. intros n y1 y2 ?; apply ofe_fun_insert_ne. done. by apply equiv_dist. Qed. Global Instance ofe_fun_singleton_proper x : Proper ((≡) ==> (≡)) (ofe_fun_singleton x) := ne_proper _. Lemma ofe_fun_lookup_singleton x (y : B x) : (ofe_fun_singleton x y) x = y. Proof. by rewrite /ofe_fun_singleton ofe_fun_lookup_insert. Qed. Lemma ofe_fun_lookup_singleton_ne x x' (y : B x) : x ≠ x' → (ofe_fun_singleton x y) x' = ε. Proof. intros; by rewrite /ofe_fun_singleton ofe_fun_lookup_insert_ne. Qed. Global Instance ofe_fun_singleton_discrete x (y : B x) : (∀ i, Discrete (ε : B i)) → Discrete y → Discrete (ofe_fun_singleton x y). Proof. apply _. Qed. Lemma ofe_fun_singleton_validN n x (y : B x) : ✓{n} ofe_fun_singleton x y ↔ ✓{n} y. Proof. split; [by move=>/(_ x); rewrite ofe_fun_lookup_singleton|]. move=>Hx x'; destruct (decide (x = x')) as [->|]; rewrite ?ofe_fun_lookup_singleton ?ofe_fun_lookup_singleton_ne //. by apply ucmra_unit_validN. Qed. Lemma ofe_fun_core_singleton x (y : B x) : core (ofe_fun_singleton x y) ≡ ofe_fun_singleton x (core y). Proof. move=>x'; destruct (decide (x = x')) as [->|]; by rewrite ofe_fun_lookup_core ?ofe_fun_lookup_singleton ?ofe_fun_lookup_singleton_ne // (core_id_core ∅). Qed. Global Instance ofe_fun_singleton_core_id x (y : B x) : CoreId y → CoreId (ofe_fun_singleton x y). Proof. by rewrite !core_id_total ofe_fun_core_singleton=> ->. Qed. Lemma ofe_fun_op_singleton (x : A) (y1 y2 : B x) : ofe_fun_singleton x y1 ⋅ ofe_fun_singleton x y2 ≡ ofe_fun_singleton x (y1 ⋅ y2). Proof. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite ofe_fun_lookup_op !ofe_fun_lookup_singleton. - by rewrite ofe_fun_lookup_op !ofe_fun_lookup_singleton_ne // left_id. Qed. Lemma ofe_fun_insert_updateP x (P : B x → Prop) (Q : ofe_fun B → Prop) g y1 : y1 ~~>: P → (∀ y2, P y2 → Q (ofe_fun_insert x y2 g)) → ofe_fun_insert x y1 g ~~>: Q. Proof. intros Hy1 HP; apply cmra_total_updateP. intros n gf Hg. destruct (Hy1 n (Some (gf x))) as (y2&?&?). { move: (Hg x). by rewrite ofe_fun_lookup_op ofe_fun_lookup_insert. } exists (ofe_fun_insert x y2 g); split; [auto|]. intros x'; destruct (decide (x' = x)) as [->|]; rewrite ofe_fun_lookup_op ?ofe_fun_lookup_insert //; []. move: (Hg x'). by rewrite ofe_fun_lookup_op !ofe_fun_lookup_insert_ne. Qed. Lemma ofe_fun_insert_updateP' x (P : B x → Prop) g y1 : y1 ~~>: P → ofe_fun_insert x y1 g ~~>: λ g', ∃ y2, g' = ofe_fun_insert x y2 g ∧ P y2. Proof. eauto using ofe_fun_insert_updateP. Qed. Lemma ofe_fun_insert_update g x y1 y2 : y1 ~~> y2 → ofe_fun_insert x y1 g ~~> ofe_fun_insert x y2 g. Proof. rewrite !cmra_update_updateP; eauto using ofe_fun_insert_updateP with subst. Qed. Lemma ofe_fun_singleton_updateP x (P : B x → Prop) (Q : ofe_fun B → Prop) y1 : y1 ~~>: P → (∀ y2, P y2 → Q (ofe_fun_singleton x y2)) → ofe_fun_singleton x y1 ~~>: Q. Proof. rewrite /ofe_fun_singleton; eauto using ofe_fun_insert_updateP. Qed. Lemma ofe_fun_singleton_updateP' x (P : B x → Prop) y1 : y1 ~~>: P → ofe_fun_singleton x y1 ~~>: λ g, ∃ y2, g = ofe_fun_singleton x y2 ∧ P y2. Proof. eauto using ofe_fun_singleton_updateP. Qed. Lemma ofe_fun_singleton_update x (y1 y2 : B x) : y1 ~~> y2 → ofe_fun_singleton x y1 ~~> ofe_fun_singleton x y2. Proof. eauto using ofe_fun_insert_update. Qed. Lemma ofe_fun_singleton_updateP_empty x (P : B x → Prop) (Q : ofe_fun B → Prop) : ε ~~>: P → (∀ y2, P y2 → Q (ofe_fun_singleton x y2)) → ε ~~>: Q. Proof. intros Hx HQ; apply cmra_total_updateP. intros n gf Hg. destruct (Hx n (Some (gf x))) as (y2&?&?); first apply Hg. exists (ofe_fun_singleton x y2); split; [by apply HQ|]. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite ofe_fun_lookup_op ofe_fun_lookup_singleton. - rewrite ofe_fun_lookup_op ofe_fun_lookup_singleton_ne //. apply Hg. Qed. Lemma ofe_fun_singleton_updateP_empty' x (P : B x → Prop) : ε ~~>: P → ε ~~>: λ g, ∃ y2, g = ofe_fun_singleton x y2 ∧ P y2. Proof. eauto using ofe_fun_singleton_updateP_empty. Qed. Lemma ofe_fun_singleton_update_empty x (y : B x) : ε ~~> y → ε ~~> ofe_fun_singleton x y. Proof. rewrite !cmra_update_updateP; eauto using ofe_fun_singleton_updateP_empty with subst. Qed. End cmra.
 From iris.algebra Require Export cmra. From iris.algebra Require Import updates. From stdpp Require Import finite. Set Default Proof Using "Type". Definition iprod_insert `{EqDecision A} {B : A → ofeT} (x : A) (y : B x) (f : iprod B) : iprod B := λ x', match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. Instance: Params (@iprod_insert) 5. Definition iprod_singleton `{Finite A} {B : A → ucmraT} (x : A) (y : B x) : iprod B := iprod_insert x y ε. Instance: Params (@iprod_singleton) 5. Section ofe. Context `{Heqdec : EqDecision A} {B : A → ofeT}. Implicit Types x : A. Implicit Types f g : iprod B. (** Properties of iprod_insert. *) Global Instance iprod_insert_ne x : NonExpansive2 (iprod_insert (B:=B) x). Proof. intros n y1 y2 ? f1 f2 ? x'; rewrite /iprod_insert. by destruct (decide _) as [[]|]. Qed. Global Instance iprod_insert_proper x : Proper ((≡) ==> (≡) ==> (≡)) (iprod_insert x) := ne_proper_2 _. Lemma iprod_lookup_insert f x y : (iprod_insert x y f) x = y. Proof. rewrite /iprod_insert; destruct (decide _) as [Hx|]; last done. by rewrite (proof_irrel Hx eq_refl). Qed. Lemma iprod_lookup_insert_ne f x x' y : x ≠ x' → (iprod_insert x y f) x' = f x'. Proof. by rewrite /iprod_insert; destruct (decide _). Qed. Global Instance iprod_insert_discrete f x y : Discrete f → Discrete y → Discrete (iprod_insert x y f). Proof. intros ?? g Heq x'; destruct (decide (x = x')) as [->|]. - rewrite iprod_lookup_insert. apply: discrete. by rewrite -(Heq x') iprod_lookup_insert. - rewrite iprod_lookup_insert_ne //. apply: discrete. by rewrite -(Heq x') iprod_lookup_insert_ne. Qed. End ofe. Section cmra. Context `{Finite A} {B : A → ucmraT}. Implicit Types x : A. Implicit Types f g : iprod B. Global Instance iprod_singleton_ne x : NonExpansive (iprod_singleton x : B x → _). Proof. intros n y1 y2 ?; apply iprod_insert_ne. done. by apply equiv_dist. Qed. Global Instance iprod_singleton_proper x : Proper ((≡) ==> (≡)) (iprod_singleton x) := ne_proper _. Lemma iprod_lookup_singleton x (y : B x) : (iprod_singleton x y) x = y. Proof. by rewrite /iprod_singleton iprod_lookup_insert. Qed. Lemma iprod_lookup_singleton_ne x x' (y : B x) : x ≠ x' → (iprod_singleton x y) x' = ε. Proof. intros; by rewrite /iprod_singleton iprod_lookup_insert_ne. Qed. Global Instance iprod_singleton_discrete x (y : B x) : (∀ i, Discrete (ε : B i)) → Discrete y → Discrete (iprod_singleton x y). Proof. apply _. Qed. Lemma iprod_singleton_validN n x (y : B x) : ✓{n} iprod_singleton x y ↔ ✓{n} y. Proof. split; [by move=>/(_ x); rewrite iprod_lookup_singleton|]. move=>Hx x'; destruct (decide (x = x')) as [->|]; rewrite ?iprod_lookup_singleton ?iprod_lookup_singleton_ne //. by apply ucmra_unit_validN. Qed. Lemma iprod_core_singleton x (y : B x) : core (iprod_singleton x y) ≡ iprod_singleton x (core y). Proof. move=>x'; destruct (decide (x = x')) as [->|]; by rewrite iprod_lookup_core ?iprod_lookup_singleton ?iprod_lookup_singleton_ne // (core_id_core ∅). Qed. Global Instance iprod_singleton_core_id x (y : B x) : CoreId y → CoreId (iprod_singleton x y). Proof. by rewrite !core_id_total iprod_core_singleton=> ->. Qed. Lemma iprod_op_singleton (x : A) (y1 y2 : B x) : iprod_singleton x y1 ⋅ iprod_singleton x y2 ≡ iprod_singleton x (y1 ⋅ y2). Proof. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite iprod_lookup_op !iprod_lookup_singleton. - by rewrite iprod_lookup_op !iprod_lookup_singleton_ne // left_id. Qed. Lemma iprod_insert_updateP x (P : B x → Prop) (Q : iprod B → Prop) g y1 : y1 ~~>: P → (∀ y2, P y2 → Q (iprod_insert x y2 g)) → iprod_insert x y1 g ~~>: Q. Proof. intros Hy1 HP; apply cmra_total_updateP. intros n gf Hg. destruct (Hy1 n (Some (gf x))) as (y2&?&?). { move: (Hg x). by rewrite iprod_lookup_op iprod_lookup_insert. } exists (iprod_insert x y2 g); split; [auto|]. intros x'; destruct (decide (x' = x)) as [->|]; rewrite iprod_lookup_op ?iprod_lookup_insert //; []. move: (Hg x'). by rewrite iprod_lookup_op !iprod_lookup_insert_ne. Qed. Lemma iprod_insert_updateP' x (P : B x → Prop) g y1 : y1 ~~>: P → iprod_insert x y1 g ~~>: λ g', ∃ y2, g' = iprod_insert x y2 g ∧ P y2. Proof. eauto using iprod_insert_updateP. Qed. Lemma iprod_insert_update g x y1 y2 : y1 ~~> y2 → iprod_insert x y1 g ~~> iprod_insert x y2 g. Proof. rewrite !cmra_update_updateP; eauto using iprod_insert_updateP with subst. Qed. Lemma iprod_singleton_updateP x (P : B x → Prop) (Q : iprod B → Prop) y1 : y1 ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → iprod_singleton x y1 ~~>: Q. Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. Lemma iprod_singleton_updateP' x (P : B x → Prop) y1 : y1 ~~>: P → iprod_singleton x y1 ~~>: λ g, ∃ y2, g = iprod_singleton x y2 ∧ P y2. Proof. eauto using iprod_singleton_updateP. Qed. Lemma iprod_singleton_update x (y1 y2 : B x) : y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. Proof. eauto using iprod_insert_update. Qed. Lemma iprod_singleton_updateP_empty x (P : B x → Prop) (Q : iprod B → Prop) : ε ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → ε ~~>: Q. Proof. intros Hx HQ; apply cmra_total_updateP. intros n gf Hg. destruct (Hx n (Some (gf x))) as (y2&?&?); first apply Hg. exists (iprod_singleton x y2); split; [by apply HQ|]. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite iprod_lookup_op iprod_lookup_singleton. - rewrite iprod_lookup_op iprod_lookup_singleton_ne //. apply Hg. Qed. Lemma iprod_singleton_updateP_empty' x (P : B x → Prop) : ε ~~>: P → ε ~~>: λ g, ∃ y2, g = iprod_singleton x y2 ∧ P y2. Proof. eauto using iprod_singleton_updateP_empty. Qed. Lemma iprod_singleton_update_empty x (y : B x) : ε ~~> y → ε ~~> iprod_singleton x y. Proof. rewrite !cmra_update_updateP; eauto using iprod_singleton_updateP_empty with subst. Qed. End cmra.
 ... @@ -1088,17 +1088,17 @@ Proof. ... @@ -1088,17 +1088,17 @@ Proof. Qed. Qed. (* Dependently-typed functions *) (* Dependently-typed functions *) (* We make [iprod] a definition so that we can register it as a canonical (* We make [ofe_fun] a definition so that we can register it as a canonical structure. *) structure. *) Definition iprod {A} (B : A → ofeT) := ∀ x : A, B x. Definition ofe_fun {A} (B : A → ofeT) := ∀ x : A, B x. Section iprod. Section ofe_fun. Context {A : Type} {B : A → ofeT}. Context {A : Type} {B : A → ofeT}. Implicit Types f g : iprod B. Implicit Types f g : ofe_fun B. Instance iprod_equiv : Equiv (iprod B) := λ f g, ∀ x, f x ≡ g x. Instance ofe_fun_equiv : Equiv (ofe_fun B) := λ f g, ∀ x, f x ≡ g x. Instance iprod_dist : Dist (iprod B) := λ n f g, ∀ x, f x ≡{n}≡ g x. Instance ofe_fun_dist : Dist (ofe_fun B) := λ n f g, ∀ x, f x ≡{n}≡ g x. Definition iprod_ofe_mixin : OfeMixin (iprod B). Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun B). Proof. Proof. split. split. - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|]. - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|]. ... @@ -1109,18 +1109,18 @@ Section iprod. ... @@ -1109,18 +1109,18 @@ Section iprod. + by intros f g h ?? x; trans (g x). + by intros f g h ?? x; trans (g x). - by intros n f g ? x; apply dist_S. - by intros n f g ? x; apply dist_S. Qed. Qed. Canonical Structure iprodC := OfeT (iprod B) iprod_ofe_mixin. Canonical Structure ofe_funC := OfeT (ofe_fun B) ofe_fun_ofe_mixin. Program Definition iprod_chain `(c : chain iprodC)