Commit 9c8e7799 authored by Dan Frumin's avatar Dan Frumin Committed by Robbert Krebbers

Define PureExec for general language

parent be8849c2
......@@ -83,7 +83,8 @@ Qed.
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
Local Ltac solve_pureexec :=
intros; split; intros ?; destruct_and?; [ solve_exec_safe | solve_exec_puredet ].
apply hoist_pred_pureexec; intros; destruct_and?;
apply det_head_step_pureexec; [ solve_exec_safe | solve_exec_puredet ].
Global Instance pure_rec f x erec e1 e2 v2 :
PureExec (to_val e2 = Some v2 e1 = Rec f x erec Closed (f :b: x :b: []) erec)
......@@ -194,7 +195,7 @@ Qed.
Lemma wp_seq E e1 e2 Φ :
is_Some (to_val e1) Closed [] e2
WP e2 @ E {{ Φ }} WP Seq e1 e2 @ E {{ Φ }}.
Proof. iIntros ([? ?] ?). rewrite -(wp_pure' []); by eauto. Qed.
Proof. iIntros ([? ?] ?). rewrite -wp_pure'; by eauto. Qed.
Lemma wp_skip E Φ : Φ (LitV LitUnit) WP Skip @ E {{ Φ }}.
Proof. rewrite -wp_seq; last eauto. by rewrite -wp_value. Qed.
......@@ -202,11 +203,11 @@ Proof. rewrite -wp_seq; last eauto. by rewrite -wp_value. Qed.
Lemma wp_match_inl E e0 x1 e1 x2 e2 Φ :
is_Some (to_val e0) Closed (x1 :b: []) e1
WP subst' x1 e0 e1 @ E {{ Φ }} WP Match (InjL e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. iIntros ([? ?] ?) "?". do 2 (iApply (wp_pure' []); eauto). Qed.
Proof. iIntros ([? ?] ?) "?". rewrite -!wp_pure'; by eauto. Qed.
Lemma wp_match_inr E e0 x1 e1 x2 e2 Φ :
is_Some (to_val e0) Closed (x2 :b: []) e2
WP subst' x2 e0 e2 @ E {{ Φ }} WP Match (InjR e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. iIntros ([? ?] ?) "?". do 2 (iApply (wp_pure' []); eauto). Qed.
Proof. iIntros ([? ?] ?) "?". rewrite -!wp_pure'; by eauto. Qed.
End lifting.
......@@ -46,9 +46,9 @@ Lemma tac_wp_pure `{heapG Σ} K Δ Δ' E e1 e2 φ Φ :
(Δ' WP fill K e2 @ E {{ Φ }})
(Δ WP fill K e1 @ E {{ Φ }}).
Proof.
intros ??? HΔ'.
rewrite into_laterN_env_sound /=.
rewrite HΔ' -wp_pure' //.
intros ??? HΔ'. rewrite into_laterN_env_sound /=.
rewrite -lifting.wp_bind HΔ' -wp_pure' //.
by rewrite -ectx_lifting.wp_ectx_bind_inv.
Qed.
Tactic Notation "wp_pure" open_constr(efoc) :=
......
From iris.proofmode Require Import tactics.
From iris.program_logic Require Import ectx_lifting.
From iris.program_logic Require Import lifting language ectx_language.
Set Default Proof Using "Type".
Section pure.
Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}.
Context `{irisG (ectx_lang expr) Σ}.
Implicit Types P : iProp Σ.
Implicit Types Φ : val iProp Σ.
Implicit Types v : val.
Implicit Types e : expr.
Section pure_language.
Context `{irisG Λ Σ}.
Implicit Types Φ : val Λ iProp Σ.
Implicit Types φ : Prop.
Implicit Types e : expr Λ.
Class PureExec (P : Prop) (e1 e2 : expr) := {
Class PureExec (P : Prop) (e1 e2 : expr Λ) := {
pure_exec_safe :
P -> σ, head_reducible e1 σ;
P -> σ, language.reducible e1 σ;
pure_exec_puredet :
P -> σ1 e2' σ2 efs, head_step e1 σ1 e2' σ2 efs -> σ1=σ2 /\ e2=e2' /\ [] = efs;
P -> σ1 e2' σ2 efs, language.prim_step e1 σ1 e2' σ2 efs -> σ1=σ2 /\ e2=e2' /\ [] = efs;
}.
Lemma wp_pure `{Inhabited state} K E E' e1 e2 φ Φ :
Lemma wp_pure `{Inhabited (state Λ)} E E' e1 e2 φ Φ :
PureExec φ e1 e2
φ
(|={E,E'}=> WP fill K e2 @ E {{ Φ }}) WP fill K e1 @ E {{ Φ }}.
(|={E,E'}=> WP e2 @ E {{ Φ }}) WP e1 @ E {{ Φ }}.
Proof.
iIntros (? Hφ) "HWP".
iApply wp_bind.
iApply (wp_lift_pure_det_head_step_no_fork with "[HWP]").
{ destruct (pure_exec_safe Hφ inhabitant) as (? & ? & ? & Hst).
eapply ectx_language.val_stuck.
apply Hst. }
iApply (wp_lift_pure_det_step with "[HWP]").
{ apply (pure_exec_safe Hφ). }
{ apply (pure_exec_puredet Hφ). }
iApply wp_bind_inv.
iExact "HWP".
rewrite big_sepL_nil right_id //.
Qed.
Lemma wp_pure' `{Inhabited state} K E e1 e2 φ Φ :
Lemma wp_pure' `{Inhabited (state Λ)} E e1 e2 φ Φ :
PureExec φ e1 e2
φ
( WP fill K e2 @ E {{ Φ }}) WP fill K e1 @ E {{ Φ }}.
( WP e2 @ E {{ Φ }}) WP e1 @ E {{ Φ }}.
Proof.
intros ? ?.
rewrite -wp_pure //.
rewrite -step_fupd_intro //.
Qed.
End pure.
Lemma hoist_pred_pureexec (P : Prop) (e1 e2 : expr Λ) :
(P PureExec True e1 e2)
PureExec P e1 e2.
Proof.
intros HPE.
split; intros HP; destruct (HPE HP); eauto.
Qed.
End pure_language.
Section pure_ectx_language.
Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}.
Context `{irisG (ectx_lang expr) Σ} {Hinh : Inhabited state}.
Lemma det_head_step_pureexec (e1 e2 : expr) :
( σ, head_reducible e1 σ)
( σ1 e2' σ2 efs, head_step e1 σ1 e2' σ2 efs -> σ1=σ2 /\ e2=e2' /\ [] = efs)
PureExec True e1 e2.
Proof.
intros Hp1 Hp2.
split; intros _.
- intros σ. destruct (Hp1 σ) as (? & ? & ? & ?).
do 3 eexists. simpl.
eapply (Ectx_step _ _ _ _ _ empty_ectx); eauto using fill_empty.
- move => σ1 e2' σ2 efs /=.
intros ?%head_reducible_prim_step; eauto.
Qed.
End pure_ectx_language.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment