Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
8b23578e
Commit
8b23578e
authored
Mar 15, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Later stripping under more connectives. This fixes issue #77.
parent
cd93b485
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
15 additions
and
1 deletion
+15
-1
theories/proofmode/class_instances.v
theories/proofmode/class_instances.v
+13
-0
theories/proofmode/tactics.v
theories/proofmode/tactics.v
+2
-1
No files found.
theories/proofmode/class_instances.v
View file @
8b23578e
...
...
@@ -235,6 +235,18 @@ Global Instance from_later_sep n P1 P2 Q1 Q2 :
FromLaterN
n
P1
Q1
→
FromLaterN
n
P2
Q2
→
FromLaterN
n
(
P1
∗
P2
)
(
Q1
∗
Q2
).
Proof
.
intros
??
;
red
.
by
rewrite
laterN_sep
;
apply
sep_mono
.
Qed
.
Global
Instance
from_later_always
n
P
Q
:
FromLaterN
n
P
Q
→
FromLaterN
n
(
□
P
)
(
□
Q
).
Proof
.
by
rewrite
/
FromLaterN
-
always_laterN
=>
->.
Qed
.
Global
Instance
from_later_forall
{
A
}
n
(
Φ
Ψ
:
A
→
uPred
M
)
:
(
∀
x
,
FromLaterN
n
(
Φ
x
)
(
Ψ
x
))
→
FromLaterN
n
(
∀
x
,
Φ
x
)
(
∀
x
,
Ψ
x
).
Proof
.
rewrite
/
FromLaterN
laterN_forall
=>
?.
by
apply
forall_mono
.
Qed
.
Global
Instance
from_later_exist
{
A
}
n
(
Φ
Ψ
:
A
→
uPred
M
)
:
Inhabited
A
→
(
∀
x
,
FromLaterN
n
(
Φ
x
)
(
Ψ
x
))
→
FromLaterN
n
(
∃
x
,
Φ
x
)
(
∃
x
,
Ψ
x
).
Proof
.
intros
?.
rewrite
/
FromLaterN
laterN_exist
=>
?.
by
apply
exist_mono
.
Qed
.
(* IntoWand *)
Global
Instance
wand_weaken_exact
P
Q
:
WandWeaken
P
Q
P
Q
.
Proof
.
done
.
Qed
.
...
...
@@ -315,6 +327,7 @@ Global Instance from_sep_ownM (a b1 b2 : M) :
FromOp
a
b1
b2
→
FromSep
(
uPred_ownM
a
)
(
uPred_ownM
b1
)
(
uPred_ownM
b2
).
Proof
.
intros
.
by
rewrite
/
FromSep
-
ownM_op
from_op
.
Qed
.
Global
Instance
from_sep_pure
φ
ψ
:
@
FromSep
M
⌜φ
∧
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
by
rewrite
/
FromSep
pure_and
sep_and
.
Qed
.
Global
Instance
from_sep_always
P
Q1
Q2
:
...
...
theories/proofmode/tactics.v
View file @
8b23578e
...
...
@@ -737,7 +737,8 @@ Tactic Notation "iNext" open_constr(n) :=
|
lazymatch
goal
with
|
|-
IntoLaterNEnvs
0
_
_
=>
fail
"iNext:"
P
"does not contain laters"
|
_
=>
apply
_
end
|].
end
|
lazy
beta
(* remove beta redexes caused by removing laters under binders*)
].
Tactic
Notation
"iNext"
:
=
iNext
_
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment