Commit 6df33dac authored by Robbert Krebbers's avatar Robbert Krebbers

More consistent naming for `pure_exec`.

parent 5e472be6
......@@ -82,49 +82,49 @@ Qed.
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
Local Ltac solve_pureexec :=
Local Ltac solve_pure_exec :=
repeat lazymatch goal with
| H: IntoVal ?e _ |- _ => rewrite -(of_to_val e _ into_val); clear H
| H: AsRec _ _ _ _ |- _ => rewrite H; clear H
end;
apply det_head_step_pureexec; [ solve_exec_safe | solve_exec_puredet ].
apply det_head_step_pure_exec; [ solve_exec_safe | solve_exec_puredet ].
Global Instance pure_rec f x (erec e1 e2 : expr) (v2 : val)
`{!IntoVal e2 v2, AsRec e1 f x erec, Closed (f :b: x :b: []) erec} :
PureExec True (App e1 e2) (subst' x e2 (subst' f e1 erec)).
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_unop op e v v' `{!IntoVal e v} :
PureExec (un_op_eval op v = Some v') (UnOp op e) (of_val v').
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_binop op e1 e2 v1 v2 v' `{!IntoVal e1 v1, !IntoVal e2 v2} :
PureExec (bin_op_eval op v1 v2 = Some v') (BinOp op e1 e2) (of_val v').
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_if_true e1 e2 :
PureExec True (If (Lit (LitBool true)) e1 e2) e1.
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_if_false e1 e2 :
PureExec True (If (Lit (LitBool false)) e1 e2) e2.
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_fst e1 e2 v1 v2 `{!IntoVal e1 v1, !IntoVal e2 v2} :
PureExec True (Fst (Pair e1 e2)) e1.
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_snd e1 e2 v1 v2 `{!IntoVal e1 v1, !IntoVal e2 v2} :
PureExec True (Snd (Pair e1 e2)) e2.
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inl e0 v e1 e2 `{!IntoVal e0 v} :
PureExec True (Case (InjL e0) e1 e2) (App e1 e0).
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} :
PureExec True (Case (InjR e0) e1 e2) (App e2 e0).
Proof. solve_pureexec. Qed.
Proof. solve_pure_exec. Qed.
(** Heap *)
Lemma wp_alloc E e v :
......
......@@ -151,7 +151,7 @@ Section ectx_language.
econstructor; eauto.
Qed.
Lemma det_head_step_pureexec (P : Prop) e1 e2 :
Lemma det_head_step_pure_exec (P : Prop) e1 e2 :
( σ, P head_reducible e1 σ)
( σ1 e2' σ2 efs,
P head_step e1 σ1 e2' σ2 efs σ1 = σ2 e2=e2' efs = [])
......
......@@ -101,7 +101,7 @@ Section language.
P prim_step e1 σ1 e2' σ2 efs σ1 = σ2 e2 = e2' efs = [];
}.
Lemma hoist_pred_pureexec (P : Prop) (e1 e2 : expr Λ) :
Lemma hoist_pred_pure_exec (P : Prop) (e1 e2 : expr Λ) :
(P PureExec True e1 e2)
PureExec P e1 e2.
Proof. intros HPE. split; intros; eapply HPE; eauto. Qed.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment