Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
4daa00cb
Commit
4daa00cb
authored
Nov 27, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Big ops distribute over and.
parent
aca09e1e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
1 deletion
+19
-1
base_logic/big_op.v
base_logic/big_op.v
+19
-1
No files found.
base_logic/big_op.v
View file @
4daa00cb
...
...
@@ -246,6 +246,11 @@ Section list.
⊣
⊢
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
∗
([
∗
list
]
k
↦
x
∈
l
,
Ψ
k
x
).
Proof
.
by
rewrite
big_opL_opL
.
Qed
.
Lemma
big_sepL_and
Φ
Ψ
l
:
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
∧
Ψ
k
x
)
⊢
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
∧
([
∗
list
]
k
↦
x
∈
l
,
Ψ
k
x
).
Proof
.
auto
using
big_sepL_mono
with
I
.
Qed
.
Lemma
big_sepL_later
Φ
l
:
▷
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
∗
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
).
Proof
.
apply
(
big_opL_commute
_
).
Qed
.
...
...
@@ -378,10 +383,15 @@ Section gmap.
Proof
.
apply
:
big_opM_fn_insert'
.
Qed
.
Lemma
big_sepM_sepM
Φ
Ψ
m
:
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
∗
Ψ
k
x
)
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
∗
Ψ
k
x
)
⊣
⊢
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
∗
([
∗
map
]
k
↦
x
∈
m
,
Ψ
k
x
).
Proof
.
apply
:
big_opM_opM
.
Qed
.
Lemma
big_sepM_and
Φ
Ψ
m
:
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
∧
Ψ
k
x
)
⊢
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
∧
([
∗
map
]
k
↦
x
∈
m
,
Ψ
k
x
).
Proof
.
auto
using
big_sepM_mono
with
I
.
Qed
.
Lemma
big_sepM_later
Φ
m
:
▷
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
∗
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
).
Proof
.
apply
(
big_opM_commute
_
).
Qed
.
...
...
@@ -520,6 +530,10 @@ Section gset.
([
∗
set
]
y
∈
X
,
Φ
y
∗
Ψ
y
)
⊣
⊢
([
∗
set
]
y
∈
X
,
Φ
y
)
∗
([
∗
set
]
y
∈
X
,
Ψ
y
).
Proof
.
apply
:
big_opS_opS
.
Qed
.
Lemma
big_sepS_and
Φ
Ψ
X
:
([
∗
set
]
y
∈
X
,
Φ
y
∧
Ψ
y
)
⊢
([
∗
set
]
y
∈
X
,
Φ
y
)
∧
([
∗
set
]
y
∈
X
,
Ψ
y
).
Proof
.
auto
using
big_sepS_mono
with
I
.
Qed
.
Lemma
big_sepS_later
Φ
X
:
▷
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
∗
set
]
y
∈
X
,
▷
Φ
y
).
Proof
.
apply
(
big_opS_commute
_
).
Qed
.
...
...
@@ -622,6 +636,10 @@ Section gmultiset.
([
∗
mset
]
y
∈
X
,
Φ
y
∗
Ψ
y
)
⊣
⊢
([
∗
mset
]
y
∈
X
,
Φ
y
)
∗
([
∗
mset
]
y
∈
X
,
Ψ
y
).
Proof
.
apply
:
big_opMS_opMS
.
Qed
.
Lemma
big_sepMS_and
Φ
Ψ
X
:
([
∗
mset
]
y
∈
X
,
Φ
y
∧
Ψ
y
)
⊢
([
∗
mset
]
y
∈
X
,
Φ
y
)
∧
([
∗
mset
]
y
∈
X
,
Ψ
y
).
Proof
.
auto
using
big_sepMS_mono
with
I
.
Qed
.
Lemma
big_sepMS_later
Φ
X
:
▷
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
∗
mset
]
y
∈
X
,
▷
Φ
y
).
Proof
.
apply
(
big_opMS_commute
_
).
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment