Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
4b059555
Commit
4b059555
authored
Dec 20, 2018
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
The unbounded fractional camera.
parent
0e078666
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
56 additions
and
0 deletions
+56
-0
_CoqProject
_CoqProject
+1
-0
theories/algebra/frac.v
theories/algebra/frac.v
+8
-0
theories/algebra/ufrac.v
theories/algebra/ufrac.v
+47
-0
No files found.
_CoqProject
View file @
4b059555
...
...
@@ -26,6 +26,7 @@ theories/algebra/gmultiset.v
theories/algebra/coPset.v
theories/algebra/deprecated.v
theories/algebra/proofmode_classes.v
theories/algebra/ufrac.v
theories/bi/notation.v
theories/bi/interface.v
theories/bi/derived_connectives.v
...
...
theories/algebra/frac.v
View file @
4b059555
(** This file provides a version of the fractional camera whose elements are
in the internal (0,1] of the rational numbers.
Notice that this camera could in principle be obtained by restricting the
validity of the unbounded fractional camera [ufrac]. *)
From
Coq
.
QArith
Require
Import
Qcanon
.
From
iris
.
algebra
Require
Export
cmra
.
From
iris
.
algebra
Require
Import
proofmode_classes
.
Set
Default
Proof
Using
"Type"
.
(** Since the standard (0,1] fractional camera is used more often, we define
[frac] through a [Notation] instead of a [Definition]. That way, Coq infers the
[frac] camera by default when using the [Qp] type. *)
Notation
frac
:
=
Qp
(
only
parsing
).
Section
frac
.
...
...
theories/algebra/ufrac.v
0 → 100644
View file @
4b059555
(** This file provides a "bounded" version of the fractional camera whose
elements are in the interval (0,..) instead of (0,1]. *)
From
Coq
.
QArith
Require
Import
Qcanon
.
From
iris
.
algebra
Require
Export
cmra
.
From
iris
.
algebra
Require
Import
proofmode_classes
.
Set
Default
Proof
Using
"Type"
.
(** Since the standard (0,1] fractional camera [frac] is used more often, we
define [ufrac] through a [Definition] instead of a [Notation]. That way, Coq
infers the [frac] camera by default when using the [Qp] type. *)
Definition
ufrac
:
=
Qp
.
Section
ufrac
.
Canonical
Structure
ufracC
:
=
leibnizC
ufrac
.
Instance
ufrac_valid
:
Valid
ufrac
:
=
λ
x
,
True
.
Instance
ufrac_pcore
:
PCore
ufrac
:
=
λ
_
,
None
.
Instance
ufrac_op
:
Op
ufrac
:
=
λ
x
y
,
(
x
+
y
)%
Qp
.
Lemma
ufrac_included
(
x
y
:
ufrac
)
:
x
≼
y
↔
(
x
<
y
)%
Qc
.
Proof
.
by
rewrite
Qp_lt_sum
.
Qed
.
Corollary
ufrac_included_weak
(
x
y
:
ufrac
)
:
x
≼
y
→
(
x
≤
y
)%
Qc
.
Proof
.
intros
?%
ufrac_included
.
auto
using
Qclt_le_weak
.
Qed
.
Definition
ufrac_ra_mixin
:
RAMixin
ufrac
.
Proof
.
split
;
try
apply
_;
try
done
.
Qed
.
Canonical
Structure
ufracR
:
=
discreteR
ufrac
ufrac_ra_mixin
.
Global
Instance
ufrac_cmra_discrete
:
CmraDiscrete
ufracR
.
Proof
.
apply
discrete_cmra_discrete
.
Qed
.
End
ufrac
.
Global
Instance
ufrac_cancelable
(
q
:
ufrac
)
:
Cancelable
q
.
Proof
.
intros
?????.
by
apply
Qp_eq
,
(
inj
(
Qcplus
q
)),
(
Qp_eq
(
q
+
y
)
(
q
+
z
))%
Qp
.
Qed
.
Global
Instance
ufrac_id_free
(
q
:
ufrac
)
:
IdFree
q
.
Proof
.
intros
[
q0
Hq0
]
?
EQ
%
Qp_eq
.
rewrite
-{
1
}(
Qcplus_0_r
q
)
in
EQ
.
eapply
Qclt_not_eq
;
first
done
.
by
apply
(
inj
(
Qcplus
q
)).
Qed
.
Lemma
ufrac_op'
(
q
p
:
ufrac
)
:
(
p
⋅
q
)
=
(
p
+
q
)%
Qp
.
Proof
.
done
.
Qed
.
Global
Instance
is_op_ufrac
(
q
:
ufrac
)
:
IsOp'
q
(
q
/
2
)%
Qp
(
q
/
2
)%
Qp
.
Proof
.
by
rewrite
/
IsOp'
/
IsOp
ufrac_op'
Qp_div_2
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment