Commit 471b2121 by David Swasey Committed by Ralf Jung

### Make it possible to apply the observational view shift lemmas.

parent ab23831f
 ... ... @@ -187,11 +187,11 @@ Proof. iFrame. by iApply big_sepL_nil. Qed. Theorem wp_invariance Σ Λ `{invPreG Σ} e σ1 t2 σ2 φ Φ : Theorem wp_invariance Σ Λ `{invPreG Σ} e σ1 t2 σ2 φ : (∀ `{Hinv : invG Σ}, True ={⊤}=∗ ∃ stateI : state Λ → iProp Σ, let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in stateI σ1 ∗ WP e {{ Φ }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φ⌝)) → stateI σ1 ∗ WP e {{ _, True }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φ⌝)) → rtc step ([e], σ1) (t2, σ2) → φ. Proof. ... ...
 ... ... @@ -50,13 +50,13 @@ Proof. iApply (Hwp (OwnPG _ _ _ _ γσ)). by rewrite /ownP. Qed. Theorem ownP_invariance Σ `{ownPPreG Λ Σ} e σ1 t2 σ2 φ Φ : Theorem ownP_invariance Σ `{ownPPreG Λ Σ} e σ1 t2 σ2 φ : (∀ `{ownPG Λ Σ}, ownP σ1 ={⊤}=∗ WP e {{ Φ }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'⌝) → ownP σ1 ={⊤}=∗ WP e {{ _, True }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'⌝) → rtc step ([e], σ1) (t2, σ2) → φ σ2. Proof. intros Hwp Hsteps. eapply (wp_invariance Σ Λ e σ1 t2 σ2 _ Φ)=> //. intros Hwp Hsteps. eapply (wp_invariance Σ Λ e σ1 t2 σ2 _)=> //. iIntros (?) "". iMod (own_alloc (● (Excl' (σ1 : leibnizC _)) ⋅ ◯ (Excl' σ1))) as (γσ) "[Hσ Hσf]"; first done. iExists (λ σ, own γσ (● (Excl' (σ:leibnizC _)))). iFrame "Hσ". ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment