Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
32abe0c0
Commit
32abe0c0
authored
Nov 21, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Big op over set union.
parent
78d3661a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
15 additions
and
0 deletions
+15
-0
algebra/cmra_big_op.v
algebra/cmra_big_op.v
+10
-0
base_logic/big_op.v
base_logic/big_op.v
+5
-0
No files found.
algebra/cmra_big_op.v
View file @
32abe0c0
...
...
@@ -378,6 +378,16 @@ Section gset.
x
∉
X
→
([
⋅
set
]
y
∈
{[
x
]}
∪
X
,
<[
x
:
=
P
]>
f
y
)
≡
(
P
⋅
[
⋅
set
]
y
∈
X
,
f
y
).
Proof
.
apply
(
big_opS_fn_insert
(
λ
y
,
id
)).
Qed
.
Lemma
big_opS_union
f
X
Y
:
X
⊥
Y
→
([
⋅
set
]
y
∈
X
∪
Y
,
f
y
)
≡
([
⋅
set
]
y
∈
X
,
f
y
)
⋅
([
⋅
set
]
y
∈
Y
,
f
y
).
Proof
.
intros
.
induction
X
as
[|
x
X
?
IH
]
using
collection_ind_L
.
{
by
rewrite
left_id_L
big_opS_empty
left_id
.
}
rewrite
-
assoc_L
!
big_opS_insert
;
[|
set_solver
..].
by
rewrite
-
assoc
IH
;
last
set_solver
.
Qed
.
Lemma
big_opS_delete
f
X
x
:
x
∈
X
→
([
⋅
set
]
y
∈
X
,
f
y
)
≡
f
x
⋅
[
⋅
set
]
y
∈
X
∖
{[
x
]},
f
y
.
Proof
.
...
...
base_logic/big_op.v
View file @
32abe0c0
...
...
@@ -457,6 +457,11 @@ Section gset.
x
∉
X
→
([
∗
set
]
y
∈
{[
x
]}
∪
X
,
<[
x
:
=
P
]>
Φ
y
)
⊣
⊢
(
P
∗
[
∗
set
]
y
∈
X
,
Φ
y
).
Proof
.
apply
:
big_opS_fn_insert'
.
Qed
.
Lemma
big_sepS_union
Φ
X
Y
:
X
⊥
Y
→
([
∗
set
]
y
∈
X
∪
Y
,
Φ
y
)
⊣
⊢
([
∗
set
]
y
∈
X
,
Φ
y
)
∗
([
∗
set
]
y
∈
Y
,
Φ
y
).
Proof
.
apply
:
big_opS_union
.
Qed
.
Lemma
big_sepS_delete
Φ
X
x
:
x
∈
X
→
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
Φ
x
∗
[
∗
set
]
y
∈
X
∖
{[
x
]},
Φ
y
.
Proof
.
apply
:
big_opS_delete
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment