Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
211bb2a1
Commit
211bb2a1
authored
Feb 13, 2016
by
Robbert Krebbers
Browse files
Internalize specs of valid and equiv for all cofe/cmras.
parent
0a593561
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/agree.v
View file @
211bb2a1
From
algebra
Require
Export
cmra
.
From
algebra
Require
Export
cmra
.
From
algebra
Require
Import
functor
.
From
algebra
Require
Import
functor
upred
.
Local
Hint
Extern
10
(
_
≤
_
)
=>
omega
.
Local
Hint
Extern
10
(
_
≤
_
)
=>
omega
.
Record
agree
(
A
:
Type
)
:
Type
:
=
Agree
{
Record
agree
(
A
:
Type
)
:
Type
:
=
Agree
{
...
@@ -129,6 +129,10 @@ Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree).
...
@@ -129,6 +129,10 @@ Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree).
Proof
.
by
intros
x
y
[
_
Hxy
]
;
apply
Hxy
.
Qed
.
Proof
.
by
intros
x
y
[
_
Hxy
]
;
apply
Hxy
.
Qed
.
Lemma
to_agree_car
n
(
x
:
agree
A
)
:
✓
{
n
}
x
→
to_agree
(
x
n
)
≡
{
n
}
≡
x
.
Lemma
to_agree_car
n
(
x
:
agree
A
)
:
✓
{
n
}
x
→
to_agree
(
x
n
)
≡
{
n
}
≡
x
.
Proof
.
intros
[??]
;
split
;
naive_solver
eauto
using
agree_valid_le
.
Qed
.
Proof
.
intros
[??]
;
split
;
naive_solver
eauto
using
agree_valid_le
.
Qed
.
(** Internalized properties *)
Lemma
agree_valid_uPred
{
M
}
x
y
:
✓
(
x
⋅
y
)
⊑
(
x
≡
y
:
uPred
M
).
Proof
.
by
intros
r
n
_
?
;
apply
:
agree_op_inv
.
Qed
.
End
agree
.
End
agree
.
Arguments
agreeC
:
clear
implicits
.
Arguments
agreeC
:
clear
implicits
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment