Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Pierre-Marie Pédrot
Iris
Commits
09ad47b4
Commit
09ad47b4
authored
Sep 05, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Rename envs_persistent → env_spatial_is_nil.
parent
0268fd31
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
8 additions
and
7 deletions
+8
-7
proofmode/coq_tactics.v
proofmode/coq_tactics.v
+7
-6
proofmode/tactics.v
proofmode/tactics.v
+1
-1
No files found.
proofmode/coq_tactics.v
View file @
09ad47b4
...
...
@@ -88,7 +88,7 @@ Definition envs_split {M}
|
true
=>
Some
(
Envs
Γ
p
Γ
s2
,
Envs
Γ
p
Γ
s1
)
end
.
Definition
env
s_persistent
{
M
}
(
Δ
:
envs
M
)
:
=
Definition
env
_spatial_is_nil
{
M
}
(
Δ
:
envs
M
)
:
=
if
env_spatial
Δ
is
Enil
then
true
else
false
.
Definition
envs_clear_spatial
{
M
}
(
Δ
:
envs
M
)
:
envs
M
:
=
...
...
@@ -247,9 +247,10 @@ Proof.
by
rewrite
IH
wand_curry
(
comm
uPred_sep
).
Qed
.
Lemma
envs_persistent_persistent
Δ
:
envs_persistent
Δ
=
true
→
PersistentP
Δ
.
Lemma
env_spatial_is_nil_persistent
Δ
:
env_spatial_is_nil
Δ
=
true
→
PersistentP
Δ
.
Proof
.
intros
;
destruct
Δ
as
[?
[]]
;
simplify_eq
/=
;
apply
_
.
Qed
.
Hint
Immediate
env
s_persistent
_persistent
:
typeclass_instances
.
Hint
Immediate
env
_spatial_is_nil
_persistent
:
typeclass_instances
.
Global
Instance
envs_Forall2_refl
(
R
:
relation
(
uPred
M
))
:
Reflexive
R
→
Reflexive
(
envs_Forall2
R
).
...
...
@@ -365,7 +366,7 @@ Lemma tac_next Δ Δ' Q Q' :
Proof
.
intros
??
HQ
.
by
rewrite
-(
from_later
Q
)
into_later_env_sound
HQ
.
Qed
.
Lemma
tac_l
ö
b
Δ
Δ
'
i
Q
:
env
s_persistent
Δ
=
true
→
env
_spatial_is_nil
Δ
=
true
→
envs_app
true
(
Esnoc
Enil
i
(
▷
Q
)%
I
)
Δ
=
Some
Δ
'
→
(
Δ
'
⊢
Q
)
→
Δ
⊢
Q
.
Proof
.
...
...
@@ -387,7 +388,7 @@ Proof.
Qed
.
(** * Always *)
Lemma
tac_always_intro
Δ
Q
:
env
s_persistent
Δ
=
true
→
(
Δ
⊢
Q
)
→
Δ
⊢
□
Q
.
Lemma
tac_always_intro
Δ
Q
:
env
_spatial_is_nil
Δ
=
true
→
(
Δ
⊢
Q
)
→
Δ
⊢
□
Q
.
Proof
.
intros
.
by
apply
(
always_intro
_
_
).
Qed
.
Lemma
tac_persistent
Δ
Δ
'
i
p
P
P'
Q
:
...
...
@@ -401,7 +402,7 @@ Qed.
(** * Implication and wand *)
Lemma
tac_impl_intro
Δ
Δ
'
i
P
Q
:
env
s_persistent
Δ
=
true
→
env
_spatial_is_nil
Δ
=
true
→
envs_app
false
(
Esnoc
Enil
i
P
)
Δ
=
Some
Δ
'
→
(
Δ
'
⊢
Q
)
→
Δ
⊢
P
→
Q
.
Proof
.
...
...
proofmode/tactics.v
View file @
09ad47b4
...
...
@@ -12,7 +12,7 @@ Declare Reduction env_cbv := cbv [
bool_eq_dec
bool_rec
bool_rect
bool_dec
eqb
andb
(* bool *)
assci_eq_dec
ascii_to_digits
Ascii
.
ascii_dec
Ascii
.
ascii_rec
Ascii
.
ascii_rect
string_eq_dec
string_rec
string_rect
(* strings *)
env_persistent
env_spatial
env
s_persistent
env_persistent
env_spatial
env
_spatial_is_nil
envs_lookup
envs_lookup_delete
envs_delete
envs_app
envs_simple_replace
envs_replace
envs_split
envs_clear_spatial
].
Ltac
env_cbv
:
=
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment