interface.v 19.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
From iris.algebra Require Export ofe.

Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "'emp'".
Reserved Notation "'⌜' φ '⌝'" (at level 1, φ at level 200, format "⌜ φ ⌝").
Reserved Notation "P ∗ Q" (at level 80, right associativity).
Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "□ P" (at level 20, right associativity).
Reserved Notation "▷ P" (at level 20, right associativity).

Section bi_mixin.
  Context {PROP : Type} `{Dist PROP, Equiv PROP}.
  Context (bi_entails : PROP  PROP  Prop).
  Context (bi_emp : PROP).
  Context (bi_pure : Prop  PROP).
  Context (bi_and : PROP  PROP  PROP).
  Context (bi_or : PROP  PROP  PROP).
  Context (bi_impl : PROP  PROP  PROP).
  Context (bi_forall :  A, (A  PROP)  PROP).
  Context (bi_exist :  A, (A  PROP)  PROP).
  Context (bi_internal_eq :  A : ofeT, A  A  PROP).
  Context (bi_sep : PROP  PROP  PROP).
  Context (bi_wand : PROP  PROP  PROP).
  Context (bi_persistently : PROP  PROP).
  Context (bi_later : PROP  PROP).

  Local Infix "⊢" := bi_entails.
  Local Notation "'emp'" := bi_emp.
  Local Notation "'True'" := (bi_pure True).
  Local Notation "'False'" := (bi_pure False).
  Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%C).
  Local Infix "∧" := bi_and.
  Local Infix "∨" := bi_or.
  Local Infix "→" := bi_impl.
  Local Notation "∀ x .. y , P" :=
    (bi_forall _ (λ x, .. (bi_forall _ (λ y, P)) ..)).
  Local Notation "∃ x .. y , P" :=
    (bi_exist _ (λ x, .. (bi_exist _ (λ y, P)) ..)).
  Local Notation "x ≡ y" := (bi_internal_eq _ x y).
  Local Infix "∗" := bi_sep.
  Local Infix "-∗" := bi_wand.
  Local Notation "□ P" := (bi_persistently P).
  Local Notation "▷ P" := (bi_later P).

  Record BIMixin := {
    bi_mixin_entails_po : PreOrder bi_entails;
    bi_mixin_equiv_spec P Q : equiv P Q  (P  Q)  (Q  P);

    (* Non-expansiveness *)
    bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure;
    bi_mixin_and_ne : NonExpansive2 bi_and;
    bi_mixin_or_ne : NonExpansive2 bi_or;
    bi_mixin_impl_ne : NonExpansive2 bi_impl;
    bi_mixin_forall_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A);
    bi_mixin_exist_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A);
    bi_mixin_sep_ne : NonExpansive2 bi_sep;
    bi_mixin_wand_ne : NonExpansive2 bi_wand;
    bi_mixin_persistently_ne : NonExpansive bi_persistently;
    sbi_mixin_internal_eq_ne (A : ofeT) : NonExpansive2 (bi_internal_eq A);

    (* Higher-order logic *)
    bi_mixin_pure_intro P (φ : Prop) : φ  P   φ ;
    bi_mixin_pure_elim' (φ : Prop) P : (φ  True  P)   φ   P;
    bi_mixin_pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a )    a, φ a ;

    bi_mixin_and_elim_l P Q : P  Q  P;
    bi_mixin_and_elim_r P Q : P  Q  Q;
    bi_mixin_and_intro P Q R : (P  Q)  (P  R)  P  Q  R;

    bi_mixin_or_intro_l P Q : P  P  Q;
    bi_mixin_or_intro_r P Q : Q  P  Q;
    bi_mixin_or_elim P Q R : (P  R)  (Q  R)  P  Q  R;

    bi_mixin_impl_intro_r P Q R : (P  Q  R)  P  Q  R;
    bi_mixin_impl_elim_l' P Q R : (P  Q  R)  P  Q  R;

    bi_mixin_forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a;
    bi_mixin_forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a;

    bi_mixin_exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a;
    bi_mixin_exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q;

    (* Equality *)
    bi_mixin_internal_eq_refl {A : ofeT} P (a : A) : P  a  a;
    bi_mixin_internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
      NonExpansive Ψ  a  b  Ψ a  Ψ b;
    bi_mixin_fun_ext {A B} (f g : A -c> B) : ( x, f x  g x)  f  g;
    bi_mixin_sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  x  y;
    bi_mixin_discrete_eq_1 {A : ofeT} (a b : A) : Discrete a  a  b  a  b;

    (* BI connectives *)
    bi_mixin_sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q';
    bi_mixin_emp_sep_1 P : P  emp  P;
    bi_mixin_emp_sep_2 P : emp  P  P;
    bi_mixin_sep_comm' P Q : P  Q  Q  P;
    bi_mixin_sep_assoc' P Q R : (P  Q)  R  P  (Q  R);
    bi_mixin_wand_intro_r P Q R : (P  Q  R)  P  Q - R;
    bi_mixin_wand_elim_l' P Q R : (P  Q - R)  P  Q  R;

    (* Persistently *)
    bi_mixin_persistently_mono P Q : (P  Q)   P   Q;
    bi_mixin_persistently_idemp_2 P :  P    P;

    bi_mixin_persistently_forall_2 {A} (Ψ : A  PROP) :
      ( a,  Ψ a)    a, Ψ a;
    bi_mixin_persistently_exist_1 {A} (Ψ : A  PROP) :
       ( a, Ψ a)   a,  Ψ a;

    bi_mixin_persistently_emp_intro P : P   emp;
    bi_mixin_persistently_absorbing P Q :  P  Q   P;
Robbert Krebbers's avatar
Robbert Krebbers committed
113
    bi_mixin_persistently_and_sep_elim P Q :  P  Q  (emp  P)  Q;
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  }.

  Record SBIMixin := {
    sbi_mixin_later_contractive : Contractive bi_later;

    sbi_mixin_later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y);
    sbi_mixin_later_eq_2 {A : ofeT} (x y : A) :  (x  y)  Next x  Next y;

    sbi_mixin_later_mono P Q : (P  Q)   P   Q;
    sbi_mixin_löb P : ( P  P)  P;

    sbi_mixin_later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a;
    sbi_mixin_later_exist_false {A} (Φ : A  PROP) :
      (  a, Φ a)   False  ( a,  Φ a);
    sbi_mixin_later_sep_1 P Q :  (P  Q)   P   Q;
    sbi_mixin_later_sep_2 P Q :  P   Q   (P  Q);
    sbi_mixin_later_persistently_1 P :   P    P;
    sbi_mixin_later_persistently_2 P :   P    P;

    sbi_mixin_later_false_em P :  P   False  ( False  P);
  }.
End bi_mixin.

Structure bi := BI {
  bi_car :> Type;
  bi_dist : Dist bi_car;
  bi_equiv : Equiv bi_car;
  bi_entails : bi_car  bi_car  Prop;
  bi_emp : bi_car;
  bi_pure : Prop  bi_car;
  bi_and : bi_car  bi_car  bi_car;
  bi_or : bi_car  bi_car  bi_car;
  bi_impl : bi_car  bi_car  bi_car;
  bi_forall :  A, (A  bi_car)  bi_car;
  bi_exist :  A, (A  bi_car)  bi_car;
  bi_internal_eq :  A : ofeT, A  A  bi_car;
  bi_sep : bi_car  bi_car  bi_car;
  bi_wand : bi_car  bi_car  bi_car;
  bi_persistently : bi_car  bi_car;
  bi_ofe_mixin : OfeMixin bi_car;
  bi_bi_mixin : BIMixin bi_entails bi_emp bi_pure bi_and bi_or bi_impl
                        bi_forall bi_exist bi_internal_eq
                        bi_sep bi_wand bi_persistently;
}.

Coercion bi_ofeC (PROP : bi) : ofeT := OfeT PROP (bi_ofe_mixin PROP).
Canonical Structure bi_ofeC.

Instance: Params (@bi_entails) 1.
Instance: Params (@bi_emp) 1.
Instance: Params (@bi_pure) 1.
Instance: Params (@bi_and) 1.
Instance: Params (@bi_or) 1.
Instance: Params (@bi_impl) 1.
Instance: Params (@bi_forall) 2.
Instance: Params (@bi_exist) 2.
Instance: Params (@bi_internal_eq) 2.
Instance: Params (@bi_sep) 1.
Instance: Params (@bi_wand) 1.
Instance: Params (@bi_persistently) 1.

Delimit Scope bi_scope with I.
Arguments bi_car : simpl never.
Arguments bi_dist : simpl never.
Arguments bi_equiv : simpl never.
Arguments bi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
Arguments bi_pure {PROP} _%C : simpl never, rename.
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
Arguments bi_persistently {PROP} _%I : simpl never, rename.

Structure sbi := SBI {
  sbi_car :> Type;
  sbi_dist : Dist sbi_car;
  sbi_equiv : Equiv sbi_car;
  sbi_entails : sbi_car  sbi_car  Prop;
  sbi_emp : sbi_car;
  sbi_pure : Prop  sbi_car;
  sbi_and : sbi_car  sbi_car  sbi_car;
  sbi_or : sbi_car  sbi_car  sbi_car;
  sbi_impl : sbi_car  sbi_car  sbi_car;
  sbi_forall :  A, (A  sbi_car)  sbi_car;
  sbi_exist :  A, (A  sbi_car)  sbi_car;
  sbi_internal_eq :  A : ofeT, A  A  sbi_car;
  sbi_sep : sbi_car  sbi_car  sbi_car;
  sbi_wand : sbi_car  sbi_car  sbi_car;
  sbi_persistently : sbi_car  sbi_car;
  bi_later : sbi_car  sbi_car;
  sbi_ofe_mixin : OfeMixin sbi_car;
  sbi_bi_mixin : BIMixin sbi_entails sbi_emp sbi_pure sbi_and sbi_or sbi_impl
                         sbi_forall sbi_exist sbi_internal_eq
                         sbi_sep sbi_wand sbi_persistently;
213
  sbi_sbi_mixin : SBIMixin sbi_entails sbi_pure sbi_or sbi_impl
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                           sbi_forall sbi_exist sbi_internal_eq
                           sbi_sep sbi_persistently bi_later;
}.

Arguments sbi_car : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
Arguments bi_pure {PROP} _%C : simpl never, rename.
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
Arguments bi_persistently {PROP} _%I : simpl never, rename.

Coercion sbi_ofeC (PROP : sbi) : ofeT := OfeT PROP (sbi_ofe_mixin PROP).
Canonical Structure sbi_ofeC.
Coercion sbi_bi (PROP : sbi) : bi :=
  {| bi_ofe_mixin := sbi_ofe_mixin PROP; bi_bi_mixin := sbi_bi_mixin PROP |}.
Canonical Structure sbi_bi.

Arguments sbi_car : simpl never.
Arguments sbi_dist : simpl never.
Arguments sbi_equiv : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments sbi_emp {PROP} : simpl never, rename.
Arguments sbi_pure {PROP} _%C : simpl never, rename.
Arguments sbi_and {PROP} _%I _%I : simpl never, rename.
Arguments sbi_or {PROP} _%I _%I : simpl never, rename.
Arguments sbi_impl {PROP} _%I _%I : simpl never, rename.
Arguments sbi_forall {PROP _} _%I : simpl never, rename.
Arguments sbi_exist {PROP _} _%I : simpl never, rename.
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments sbi_sep {PROP} _%I _%I : simpl never, rename.
Arguments sbi_wand {PROP} _%I _%I : simpl never, rename.
Arguments sbi_persistently {PROP} _%I : simpl never, rename.
Arguments bi_later {PROP} _%I : simpl never, rename.

Hint Extern 0 (bi_entails _ _) => reflexivity.
Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP).
Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).

Notation "P ⊢ Q" := (bi_entails P%I Q%I) : C_scope.
Notation "(⊢)" := bi_entails (only parsing) : C_scope.

Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I)
  (at level 95, no associativity) : C_scope.
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : C_scope.

Notation "P -∗ Q" := (P  Q) : C_scope.

Notation "'emp'" := (bi_emp) : bi_scope.
Notation "'⌜' φ '⌝'" := (bi_pure φ%type%C) : bi_scope.
Notation "'True'" := (bi_pure True) : bi_scope.
Notation "'False'" := (bi_pure False) : bi_scope.
Infix "∧" := bi_and : bi_scope.
Notation "(∧)" := bi_and (only parsing) : bi_scope.
Infix "∨" := bi_or : bi_scope.
Notation "(∨)" := bi_or (only parsing) : bi_scope.
Infix "→" := bi_impl : bi_scope.
Infix "∗" := bi_sep : bi_scope.
Notation "(∗)" := bi_sep (only parsing) : bi_scope.
Notation "P -∗ Q" := (bi_wand P Q) : bi_scope.
Notation "∀ x .. y , P" :=
  (bi_forall (λ x, .. (bi_forall (λ y, P)) ..)%I) : bi_scope.
Notation "∃ x .. y , P" :=
  (bi_exist (λ x, .. (bi_exist (λ y, P)) ..)%I) : bi_scope.
Notation "□ P" := (bi_persistently P) : bi_scope.

Infix "≡" := bi_internal_eq : bi_scope.
Notation "▷ P" := (bi_later P) : bi_scope.

Coercion bi_valid {PROP : bi} (P : PROP) : Prop := emp  P.
Coercion sbi_valid {PROP : sbi} : PROP  Prop := bi_valid.

Arguments bi_valid {_} _%I : simpl never.
Typeclasses Opaque bi_valid.

Module bi.
Section bi_laws.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types A : Type.

(* About the entailment *)
Global Instance entails_po : PreOrder (@bi_entails PROP).
Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed.
Lemma equiv_spec P Q : P  Q  (P  Q)  (Q  P).
Proof. eapply bi_mixin_equiv_spec, bi_bi_mixin. Qed.

(* Non-expansiveness *)
Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP).
Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed.
Global Instance and_ne : NonExpansive2 (@bi_and PROP).
Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed.
Global Instance or_ne : NonExpansive2 (@bi_or PROP).
Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed.
Global Instance impl_ne : NonExpansive2 (@bi_impl PROP).
Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed.
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A).
Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A).
Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed.
Global Instance sep_ne : NonExpansive2 (@bi_sep PROP).
Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed.
Global Instance wand_ne : NonExpansive2 (@bi_wand PROP).
Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed.
Global Instance persistently_ne : NonExpansive (@bi_persistently PROP).
Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed.

(* Higher-order logic *)
Lemma pure_intro P (φ : Prop) : φ  P   φ .
Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed.
Lemma pure_elim' (φ : Prop) P : (φ  True  P)   φ   P.
Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed.
Lemma pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a  : PROP)    a, φ a .
Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed.

Lemma forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a.
Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed.
Lemma forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a.
Proof. eapply (bi_mixin_forall_elim  bi_entails), bi_bi_mixin. Qed.

Lemma exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a.
Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed.
Lemma exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed.

(* Equality *)
Global Instance internal_eq_ne (A : ofeT) :
  NonExpansive2 (@bi_internal_eq PROP A).
Proof. eapply sbi_mixin_internal_eq_ne, bi_bi_mixin. Qed.

Lemma internal_eq_refl {A : ofeT} P (a : A) : P  a  a.
Proof. eapply bi_mixin_internal_eq_refl, bi_bi_mixin. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. eapply bi_mixin_internal_eq_rewrite, bi_bi_mixin. Qed.

Lemma fun_ext {A B} (f g : A -c> B) : ( x, f x  g x)  (f  g : PROP).
Proof. eapply bi_mixin_fun_ext, bi_bi_mixin. Qed.
Lemma sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  (x  y : PROP).
Proof. eapply bi_mixin_sig_eq, bi_bi_mixin. Qed.
Lemma discrete_eq_1 {A : ofeT} (a b : A) :
  Discrete a  a  b  (a  b : PROP).
Proof. eapply bi_mixin_discrete_eq_1, bi_bi_mixin. Qed.

(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed.
Lemma emp_sep_1 P : P  emp  P.
Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed.
Lemma emp_sep_2 P : emp  P  P.
Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed.
Lemma sep_comm' P Q : P  Q  Q  P.
Proof. eapply (bi_mixin_sep_comm' bi_entails), bi_bi_mixin. Qed.
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed.
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed.
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed.

(* Persistently *)
Lemma persistently_mono P Q : (P  Q)   P   Q.
Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed.
Lemma persistently_idemp_2 P :  P    P.
Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed.

Lemma persistently_forall_2 {A} (Ψ : A  PROP) : ( a,  Ψ a)    a, Ψ a.
Proof. eapply bi_mixin_persistently_forall_2, bi_bi_mixin. Qed.
Lemma persistently_exist_1 {A} (Ψ : A  PROP) :  ( a, Ψ a)   a,  Ψ a.
Proof. eapply bi_mixin_persistently_exist_1, bi_bi_mixin. Qed.

Lemma persistently_emp_intro P : P   emp.
Proof. eapply bi_mixin_persistently_emp_intro, bi_bi_mixin. Qed.
Lemma persistently_absorbing P Q :  P  Q   P.
Proof. eapply (bi_mixin_persistently_absorbing bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418
Lemma persistently_and_sep_elim P Q :  P  Q  (emp  P)  Q.
Proof. eapply bi_mixin_persistently_and_sep_elim, bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
End bi_laws.

Section sbi_laws.
Context {PROP : sbi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.

Global Instance later_contractive : Contractive (@bi_later PROP).
Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed.

Lemma later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y : PROP).
Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed.
Lemma later_eq_2 {A : ofeT} (x y : A) :  (x  y)  (Next x  Next y : PROP).
Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed.

Lemma later_mono P Q : (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_mono, sbi_sbi_mixin. Qed.
Lemma löb P : ( P  P)  P.
Proof. eapply sbi_mixin_löb, sbi_sbi_mixin. Qed.

Lemma later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a.
Proof. eapply sbi_mixin_later_forall_2, sbi_sbi_mixin. Qed.
Lemma later_exist_false {A} (Φ : A  PROP) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. eapply sbi_mixin_later_exist_false, sbi_sbi_mixin. Qed.
Lemma later_sep_1 P Q :  (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_sep_1, sbi_sbi_mixin. Qed.
Lemma later_sep_2 P Q :  P   Q   (P  Q).
Proof. eapply sbi_mixin_later_sep_2, sbi_sbi_mixin. Qed.
Lemma later_persistently_1 P :   P    P.
Proof. eapply (sbi_mixin_later_persistently_1 bi_entails), sbi_sbi_mixin. Qed.
Lemma later_persistently_2 P :   P    P.
Proof. eapply (sbi_mixin_later_persistently_2 bi_entails), sbi_sbi_mixin. Qed.

Lemma later_false_em P :  P   False  ( False  P).
Proof. eapply sbi_mixin_later_false_em, sbi_sbi_mixin. Qed.
End sbi_laws.
End bi.