classes.v 14.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.bi Require Export bi.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3 4 5
Import bi.

Class FromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
6
  from_assumption : ?p P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9
Arguments FromAssumption {_} _ _%I _%I : simpl never.
Arguments from_assumption {_} _ _%I _%I {_}.
(* No need to restrict Hint Mode, we have a default instance that will always
10 11
be used in case of evars *)
Hint Mode FromAssumption + + - - : typeclass_instances.
12

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14 15 16
Class IntoPure {PROP : bi} (P : PROP) (φ : Prop) :=
  into_pure : P  ⌜φ⌝.
Arguments IntoPure {_} _%I _%type_scope : simpl never.
Arguments into_pure {_} _%I _%type_scope {_}.
17 18
Hint Mode IntoPure + ! - : typeclass_instances.

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
(* [IntoPureT] is a variant of [IntoPure] with the argument in [Type] to avoid
some shortcoming of unification in Coq's type class search. An example where we
use this workaround is to repair the following instance:

  Global Instance into_exist_and_pure P Q (φ : Prop) :
    IntoPure P φ → IntoExist (P ∧ Q) (λ _ : φ, Q).

Coq is unable to use this instance: [class_apply] -- which is used by type class
search -- fails with the error that it cannot unify [Prop] and [Type]. This is
probably caused because [class_apply] uses an ancient unification algorith. The
[refine] tactic -- which uses a better unification algorithm -- succeeds to
apply the above instance.

Since we do not want to define [Hint Extern] declarations using [refine] for
any instance like [into_exist_and_pure], we factor this out in the class
[IntoPureT]. This way, we only have to declare a [Hint Extern] using [refine]
once, and use [IntoPureT] in any instance like [into_exist_and_pure].

TODO: Report this as a Coq bug, or wait for https://github.com/coq/coq/pull/991
to be finished and merged someday. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
39
Class IntoPureT {PROP : bi} (P : PROP) (φ : Type) :=
40
  into_pureT :  ψ : Prop, φ = ψ  IntoPure P ψ.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Lemma into_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : IntoPure P φ  IntoPureT P φ.
42 43 44 45
Proof. by exists φ. Qed.
Hint Extern 0 (IntoPureT _ _) =>
  notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49
Class FromPure {PROP : bi} (P : PROP) (φ : Prop) :=
  from_pure : ⌜φ⌝  P.
Arguments FromPure {_} _%I _%type_scope : simpl never.
Arguments from_pure {_} _%I _%type_scope {_}.
50 51
Hint Mode FromPure + ! - : typeclass_instances.

52
Class FromPureT {PROP : bi} (P : PROP) (φ : Type) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
53
  from_pureT :  ψ : Prop, φ = ψ  FromPure P ψ.
54
Lemma from_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : FromPure P φ  FromPureT P φ.
Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Proof. by exists φ. Qed.
Hint Extern 0 (FromPureT _ _) =>
  notypeclasses refine (from_pureT_hint _ _ _) : typeclass_instances.

59
Class IntoInternalEq {PROP : bi} {A : ofeT} (P : PROP) (x y : A) :=
60
  into_internal_eq : P  x  y.
61 62
Arguments IntoInternalEq {_ _} _%I _%type_scope _%type_scope : simpl never.
Arguments into_internal_eq {_ _} _%I _%type_scope _%type_scope {_}.
63 64
Hint Mode IntoInternalEq + - ! - - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
65
Class IntoPersistent {PROP : bi} (p : bool) (P Q : PROP) :=
66
  into_persistent : bi_persistently_if p P  bi_persistently Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68
Arguments IntoPersistent {_} _ _%I _%I : simpl never.
Arguments into_persistent {_} _ _%I _%I {_}.
69
Hint Mode IntoPersistent + + ! - : typeclass_instances.
70

71 72 73 74 75
Class FromAlways {PROP : bi} (a pe pl : bool) (P Q : PROP) :=
  from_always : bi_affinely_if a (bi_persistently_if pe (bi_plainly_if pl Q))  P.
Arguments FromAlways {_} _ _ _ _%I _%I : simpl never.
Arguments from_always {_} _ _ _ _%I _%I {_}.
Hint Mode FromAlways + - - - ! - : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77 78 79 80 81 82
Class FromAffinely {PROP : bi} (P Q : PROP) :=
  from_affinely : bi_affinely Q  P.
Arguments FromAffinely {_} _%I _%type_scope : simpl never.
Arguments from_affinely {_} _%I _%type_scope {_}.
Hint Mode FromAffinely + ! - : typeclass_instances.
Hint Mode FromAffinely + - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
83

84 85
Class IntoAbsorbingly {PROP : bi} (P Q : PROP) :=
  into_absorbingly : P  bi_absorbingly Q.
86 87 88 89
Arguments IntoAbsorbingly {_} _%I _%I.
Arguments into_absorbingly {_} _%I _%I {_}.
Hint Mode IntoAbsorbingly + ! -  : typeclass_instances.
Hint Mode IntoAbsorbingly + - ! : typeclass_instances.
90

Robbert Krebbers's avatar
Robbert Krebbers committed
91 92 93 94 95 96 97 98 99
(*
Converting an assumption [R] into a wand [P -∗ Q] is done in three stages:

- Strip modalities and universal quantifiers of [R] until an arrow or a wand
  has been obtained.
- Balance modalities in the arguments [P] and [Q] to match the goal (which used
  for [iApply]) or the premise (when used with [iSpecialize] and a specific
  hypothesis).
- Instantiate the premise of the wand or implication.
100
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Class IntoWand {PROP : bi} (p q : bool) (R P Q : PROP) :=
102
  into_wand : ?p R  ?q P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Arguments IntoWand {_} _ _ _%I _%I _%I : simpl never.
Arguments into_wand {_} _ _ _%I _%I _%I {_}.
Hint Mode IntoWand + + + ! - - : typeclass_instances.

Class IntoWand' {PROP : bi} (p q : bool) (R P Q : PROP) :=
  into_wand' : IntoWand p q R P Q.
Arguments IntoWand' {_} _ _ _%I _%I _%I : simpl never.
Hint Mode IntoWand' + + + ! ! - : typeclass_instances.
Hint Mode IntoWand' + + + ! - ! : typeclass_instances.

Instance into_wand_wand' {PROP : bi} p q (P Q P' Q' : PROP) :
  IntoWand' p q (P - Q) P' Q'  IntoWand p q (P - Q) P' Q' | 100.
Proof. done. Qed.
Instance into_wand_impl' {PROP : bi} p q (P Q P' Q' : PROP) :
  IntoWand' p q (P  Q) P' Q'  IntoWand p q (P  Q) P' Q' | 100.
Proof. done. Qed.
119

Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123 124 125 126 127 128 129 130 131 132
Class FromSep {PROP : bi} (P Q1 Q2 : PROP) := from_sep : Q1  Q2  P.
Arguments FromSep {_} _%I _%I _%I : simpl never.
Arguments from_sep {_} _%I _%I _%I {_}.
Hint Mode FromSep + ! - - : typeclass_instances.
Hint Mode FromSep + - ! ! : typeclass_instances. (* For iCombine *)

Class FromAnd {PROP : bi} (P Q1 Q2 : PROP) := from_and : Q1  Q2  P.
Arguments FromAnd {_} _%I _%I _%I : simpl never.
Arguments from_and {_} _%I _%I _%I {_}.
Hint Mode FromAnd + ! - - : typeclass_instances.
Hint Mode FromAnd + - ! ! : typeclass_instances. (* For iCombine *)

Class IntoAnd {PROP : bi} (p : bool) (P Q1 Q2 : PROP) :=
133
  into_and : ?p P  ?p (Q1  Q2).
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135
Arguments IntoAnd {_} _ _%I _%I _%I : simpl never.
Arguments into_and {_} _ _%I _%I _%I {_}.
136
Hint Mode IntoAnd + + ! - - : typeclass_instances.
137

138 139 140 141 142
Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) :=
  into_sep : P  Q1  Q2.
Arguments IntoSep {_} _%I _%I _%I : simpl never.
Arguments into_sep {_} _%I _%I _%I {_}.
Hint Mode IntoSep + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
143

Robbert Krebbers's avatar
Robbert Krebbers committed
144 145 146
Class FromOr {PROP : bi} (P Q1 Q2 : PROP) := from_or : Q1  Q2  P.
Arguments FromOr {_} _%I _%I _%I : simpl never.
Arguments from_or {_} _%I _%I _%I {_}.
147
Hint Mode FromOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
148

Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151
Class IntoOr {PROP : bi} (P Q1 Q2 : PROP) := into_or : P  Q1  Q2.
Arguments IntoOr {_} _%I _%I _%I : simpl never.
Arguments into_or {_} _%I _%I _%I {_}.
152
Hint Mode IntoOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
153

Robbert Krebbers's avatar
Robbert Krebbers committed
154
Class FromExist {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
155
  from_exist : ( x, Φ x)  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157
Arguments FromExist {_ _} _%I _%I : simpl never.
Arguments from_exist {_ _} _%I _%I {_}.
158
Hint Mode FromExist + - ! - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
159

Robbert Krebbers's avatar
Robbert Krebbers committed
160
Class IntoExist {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
161
  into_exist : P   x, Φ x.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163
Arguments IntoExist {_ _} _%I _%I : simpl never.
Arguments into_exist {_ _} _%I _%I {_}.
164
Hint Mode IntoExist + - ! - : typeclass_instances.
165

Robbert Krebbers's avatar
Robbert Krebbers committed
166
Class IntoForall {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
167
  into_forall : P   x, Φ x.
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169
Arguments IntoForall {_ _} _%I _%I : simpl never.
Arguments into_forall {_ _} _%I _%I {_}.
170 171
Hint Mode IntoForall + - ! - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
172
Class FromForall {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :=
173 174 175 176
  from_forall : ( x, Φ x)  P.
Arguments from_forall {_ _} _ _ {_}.
Hint Mode FromForall + - ! - : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179 180 181 182 183 184
Class IsExcept0 {PROP : sbi} (Q : PROP) := is_except_0 :  Q  Q.
Arguments IsExcept0 {_} _%I : simpl never.
Arguments is_except_0 {_} _%I {_}.
Hint Mode IsExcept0 + ! : typeclass_instances.

Class FromModal {PROP : bi} (P Q : PROP) := from_modal : Q  P.
Arguments FromModal {_} _%I _%I : simpl never.
Arguments from_modal {_} _%I _%I {_}.
185
Hint Mode FromModal + ! - : typeclass_instances.
186

Robbert Krebbers's avatar
Robbert Krebbers committed
187
Class ElimModal {PROP : bi} (P P' : PROP) (Q Q' : PROP) :=
188
  elim_modal : P  (P' - Q')  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
189 190
Arguments ElimModal {_} _%I _%I _%I _%I : simpl never.
Arguments elim_modal {_} _%I _%I _%I _%I {_}.
191
Hint Mode ElimModal + ! - ! - : typeclass_instances.
192

193 194
(* Used by the specialization pattern [ > ] in [iSpecialize] and [iAssert] to
add a modality to the goal corresponding to a premise/asserted proposition. *)
195
Class AddModal {PROP : bi} (P P' : PROP) (Q : PROP) :=
196
  add_modal : P  (P' - Q)  Q.
197 198
Arguments AddModal {_} _%I _%I _%I : simpl never.
Arguments add_modal {_} _%I _%I _%I {_}.
199 200
Hint Mode AddModal + - ! ! : typeclass_instances.

201
Lemma add_modal_id {PROP : bi} (P Q : PROP) : AddModal P P Q.
202
Proof. by rewrite /AddModal wand_elim_r. Qed.
203

204 205 206 207 208 209 210 211 212
Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.

Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
213

214
Class Frame {PROP : bi} (p : bool) (R P Q : PROP) := frame : ?p R  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217 218 219
Arguments Frame {_} _ _%I _%I _%I.
Arguments frame {_ _} _%I _%I _%I {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.

Class MaybeFrame {PROP : bi} (p : bool) (R P Q : PROP) :=
220
  maybe_frame : ?p R  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234
Arguments MaybeFrame {_} _ _%I _%I _%I.
Arguments maybe_frame {_} _%I _%I _%I {_}.
Hint Mode MaybeFrame + + ! ! - : typeclass_instances.

Instance maybe_frame_frame {PROP : bi} p (R P Q : PROP) :
  Frame p R P Q  MaybeFrame p R P Q.
Proof. done. Qed.
Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) :
  MaybeFrame true R P P | 100.
Proof. intros. rewrite /MaybeFrame /=. by rewrite sep_elim_r. Qed.
Instance maybe_frame_default {PROP : bi} (R P : PROP) :
  TCOr (Affine R) (Absorbing P)  MaybeFrame false R P P | 100.
Proof. intros. rewrite /MaybeFrame /=. apply: sep_elim_r. Qed.

235 236 237 238 239 240
Class IntoExcept0 {PROP : sbi} (P Q : PROP) := into_except_0 : P   Q.
Arguments IntoExcept0 {_} _%I _%I : simpl never.
Arguments into_except_0 {_} _%I _%I {_}.
Hint Mode IntoExcept0 + ! - : typeclass_instances.
Hint Mode IntoExcept0 + - ! : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
(* The class [IntoLaterN] has only two instances:

- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN' n P Q → IntoLaterN n P Q], where [IntoLaterN']
  is identical to [IntoLaterN], but computationally is supposed to make
  progress, i.e. its instances should actually strip a later.

The point of using the auxilary class [IntoLaterN'] is to ensure that the
default instance is not applied deeply in the term, which may cause in too many
definitions being unfolded (see issue #55).

For binary connectives we have the following instances:

<<
IntoLaterN' n P P'       IntoLaterN n Q Q'
------------------------------------------
     IntoLaterN' n (P /\ Q) (P' /\ Q')


      IntoLaterN' n Q Q'
-------------------------------
IntoLaterN n (P /\ Q) (P /\ Q')
>>
*)
Class IntoLaterN {PROP : sbi} (n : nat) (P Q : PROP) := into_laterN : P  ^n Q.
Arguments IntoLaterN {_} _%nat_scope _%I _%I.
Arguments into_laterN {_} _%nat_scope _%I _%I {_}.
Hint Mode IntoLaterN + - - - : typeclass_instances.

Class IntoLaterN' {PROP : sbi} (n : nat) (P Q : PROP) :=
  into_laterN' :> IntoLaterN n P Q.
Arguments IntoLaterN' {_} _%nat_scope _%I _%I.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.

Instance into_laterN_default {PROP : sbi} n (P : PROP) : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.

Class FromLaterN {PROP : sbi} (n : nat) (P Q : PROP) := from_laterN : ^n Q  P.
Arguments FromLaterN {_} _%nat_scope _%I _%I.
Arguments from_laterN {_} _%nat_scope _%I _%I {_}.
Hint Mode FromLaterN + - ! - : typeclass_instances.

283 284 285 286 287 288 289 290 291 292 293 294
(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using `iFrame` or `iNext`, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.

This means that there are [tc_opaque] instances for all proofmode type classes
with the exception of:

- [FromAssumption] used by [iAssumption]
Robbert Krebbers's avatar
Robbert Krebbers committed
295
- [Frame] and [MaybeFrame] used by [iFrame]
296
- [IntoLaterN] and [FromLaterN] used by [iNext]
Robbert Krebbers's avatar
Robbert Krebbers committed
297
- [IntoPersistent] used by [iPersistent]
298
*)
Robbert Krebbers's avatar
Robbert Krebbers committed
299
Instance into_pure_tc_opaque {PROP : bi} (P : PROP) φ :
300
  IntoPure P φ  IntoPure (tc_opaque P) φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Instance from_pure_tc_opaque {PROP : bi} (P : PROP) φ :
302
  FromPure P φ  FromPure (tc_opaque P) φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
Instance from_laterN_tc_opaque {PROP : sbi} n (P Q : PROP) :
304
  FromLaterN n P Q  FromLaterN n (tc_opaque P) Q := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
305 306
Instance into_wand_tc_opaque {PROP : bi} p q (R P Q : PROP) :
  IntoWand p q R P Q  IntoWand p q (tc_opaque R) P Q := id.
307
(* Higher precedence than [from_and_sep] so that [iCombine] does not loop. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310
Instance from_and_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
  FromAnd P Q1 Q2  FromAnd (tc_opaque P) Q1 Q2 | 102 := id.
Instance into_and_tc_opaque {PROP : bi} p (P Q1 Q2 : PROP) :
311
  IntoAnd p P Q1 Q2  IntoAnd p (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
Instance from_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
313
  FromOr P Q1 Q2  FromOr (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
Instance into_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
315
  IntoOr P Q1 Q2  IntoOr (tc_opaque P) Q1 Q2 := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Instance from_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
317
  FromExist P Φ  FromExist (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
Instance into_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
319
  IntoExist P Φ  IntoExist (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Instance into_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A  PROP) :
321
  IntoForall P Φ  IntoForall (tc_opaque P) Φ := id.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
Instance from_modal_tc_opaque {PROP : bi} (P Q : PROP) :
323
  FromModal P Q  FromModal (tc_opaque P) Q := id.
324 325
(* Higher precedence than [elim_modal_timeless], so that [iAssert] does not
   loop (see test [test_iAssert_modality] in proofmode.v). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
326
Instance elim_modal_tc_opaque {PROP : bi} (P P' Q Q' : PROP) :
327
  ElimModal P P' Q Q'  ElimModal (tc_opaque P) P' Q Q' | 100 := id.