class_instances.v 33.6 KB
Newer Older
1
From iris.proofmode Require Export classes.
2
From iris.algebra Require Import gmap.
Ralf Jung's avatar
Ralf Jung committed
3
From stdpp Require Import gmultiset.
4
From iris.base_logic Require Import big_op tactics.
5
Set Default Proof Using "Type".
6
7
8
9
10
11
12
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

(* FromAssumption *)
13
Global Instance from_assumption_exact p P : FromAssumption p P P | 0.
14
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
15
16
17
Global Instance from_assumption_False p P : FromAssumption p False P | 1.
Proof. destruct p; rewrite /FromAssumption /= ?always_pure; apply False_elim. Qed.

18
19
20
Global Instance from_assumption_always_r P Q :
  FromAssumption true P Q  FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
21
22
23
24

Global Instance from_assumption_always_l p P Q :
  FromAssumption p P Q  FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
Global Instance from_assumption_later p P Q :
  FromAssumption p P Q  FromAssumption p P ( Q)%I.
Proof. rewrite /FromAssumption=>->. apply later_intro. Qed.
Global Instance from_assumption_laterN n p P Q :
  FromAssumption p P Q  FromAssumption p P (^n Q)%I.
Proof. rewrite /FromAssumption=>->. apply laterN_intro. Qed.
31
32
33
Global Instance from_assumption_except_0 p P Q :
  FromAssumption p P Q  FromAssumption p P ( Q)%I.
Proof. rewrite /FromAssumption=>->. apply except_0_intro. Qed.
34
Global Instance from_assumption_bupd p P Q :
35
  FromAssumption p P Q  FromAssumption p P (|==> Q)%I.
36
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
37
38
39
Global Instance from_assumption_forall {A} p (Φ : A  uPred M) Q x :
  FromAssumption p (Φ x) Q  FromAssumption p ( x, Φ x) Q.
Proof. rewrite /FromAssumption=> <-. by rewrite forall_elim. Qed.
40
41

(* IntoPure *)
Ralf Jung's avatar
Ralf Jung committed
42
Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ.
43
Proof. done. Qed.
44
Global Instance into_pure_eq {A : ofeT} (a b : A) :
45
46
  Timeless a  @IntoPure M (a  b) (a  b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
47
48
Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
  @IntoPure M ( a) ( a).
49
50
Proof. by rewrite /IntoPure discrete_valid. Qed.

Ralf Jung's avatar
Ralf Jung committed
51
Global Instance into_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
52
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
53
Proof. rewrite /IntoPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
54
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
55
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
56
Proof. rewrite /IntoPure sep_and pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
57
Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
58
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
59
Proof. rewrite /IntoPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
60
Global Instance into_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
61
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
62
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
63
Global Instance into_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
64
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1 - P2) (φ1  φ2).
65
66
67
68
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
69
Global Instance into_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
70
71
72
73
74
75
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. apply exist_elim=>x. rewrite Hx.
  apply pure_elim'=>Hφ. apply pure_intro. eauto.
Qed.

Ralf Jung's avatar
Ralf Jung committed
76
Global Instance into_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
77
78
79
80
81
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx.
Qed.

82
(* FromPure *)
Ralf Jung's avatar
Ralf Jung committed
83
Global Instance from_pure_pure φ : @FromPure M ⌜φ⌝ φ.
84
Proof. done. Qed.
85
Global Instance from_pure_internal_eq {A : ofeT} (a b : A) :
86
87
88
89
  @FromPure M (a  b) (a  b).
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply internal_eq_refl'.
Qed.
90
91
Global Instance from_pure_cmra_valid {A : cmraT} (a : A) :
  @FromPure M ( a) ( a).
92
93
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ?.
94
  rewrite -cmra_valid_intro //. auto with I.
95
Qed.
96
97
98
99
100
101
102
103
104

Global Instance from_pure_always P φ : FromPure P φ  FromPure ( P) φ.
Proof. rewrite /FromPure=> <-. by rewrite always_pure. Qed.
Global Instance from_pure_later P φ : FromPure P φ  FromPure ( P) φ.
Proof. rewrite /FromPure=> ->. apply later_intro. Qed.
Global Instance from_pure_laterN n P φ : FromPure P φ  FromPure (^n P) φ.
Proof. rewrite /FromPure=> ->. apply laterN_intro. Qed.
Global Instance from_pure_except_0 P φ : FromPure P φ  FromPure ( P) φ.
Proof. rewrite /FromPure=> ->. apply except_0_intro. Qed.
105
Global Instance from_pure_bupd P φ : FromPure P φ  FromPure (|==> P) φ.
106
Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed.
107

Ralf Jung's avatar
Ralf Jung committed
108
Global Instance from_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
109
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
110
Proof. rewrite /FromPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
111
Global Instance from_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
112
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
113
Proof. rewrite /FromPure pure_and always_and_sep_l. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
114
Global Instance from_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
115
  FromPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
116
Proof. rewrite /FromPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
117
Global Instance from_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
118
  IntoPure P1 φ1  FromPure P2 φ2  FromPure (P1  P2) (φ1  φ2).
119
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
120
Global Instance from_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
121
  IntoPure P1 φ1  FromPure P2 φ2  FromPure (P1 - P2) (φ1  φ2).
122
123
124
125
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
126
Global Instance from_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
127
128
129
130
131
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply pure_elim'=>-[x ?]. rewrite -(exist_intro x).
  rewrite -Hx. apply pure_intro. done.
Qed.
Ralf Jung's avatar
Ralf Jung committed
132
Global Instance from_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
133
134
135
136
137
138
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply forall_intro=>x. apply pure_elim'=>Hφ.
  rewrite -Hx. apply pure_intro. done.
Qed.

139
140
141
142
143
144
145
146
147
148
149
(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
  IntoPersistentP P Q  IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
  PersistentP P  IntoPersistentP P P | 100.
Proof. done. Qed.

(* IntoLater *)
150
Global Instance into_laterN_later n P Q :
151
152
153
  IntoLaterN n P Q  IntoLaterN' (S n) ( P) Q.
Proof. by rewrite /IntoLaterN' /IntoLaterN =>->. Qed.
Global Instance into_laterN_laterN n P : IntoLaterN' n (^n P) P.
154
Proof. done. Qed.
155
Global Instance into_laterN_laterN_plus n m P Q :
156
157
  IntoLaterN m P Q  IntoLaterN' (n + m) (^n P) Q.
Proof. rewrite /IntoLaterN' /IntoLaterN=>->. by rewrite laterN_plus. Qed.
158

159
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
160
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
162
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
163
Global Instance into_laterN_and_r n P P2 Q2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
164
  IntoLaterN' n P2 Q2  IntoLaterN' n (P  P2) (P  Q2) | 11.
165
Proof.
166
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Qed.
168
169

Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
170
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
172
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
173
Global Instance into_laterN_or_r n P P2 Q2 :
174
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  IntoLaterN' n (P  P2) (P  Q2) | 11.
176
Proof.
177
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
178
179
180
Qed.

Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
181
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
182
183
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
184
Global Instance into_laterN_sep_r n P P2 Q2 :
185
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
186
  IntoLaterN' n (P  P2) (P  Q2) | 11.
187
Proof.
188
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
189
Qed.
190
191

Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat  A  uPred M) (l: list A) :
192
193
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ list] k  x  l, Φ k x) ([ list] k  x  l, Ψ k x).
194
Proof.
195
  rewrite /IntoLaterN' /IntoLaterN=> ?.
196
  rewrite big_opL_commute. by apply big_sepL_mono.
197
198
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
199
    (Φ Ψ : K  A  uPred M) (m : gmap K A) :
200
201
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ map] k  x  m, Φ k x) ([ map] k  x  m, Ψ k x).
202
Proof.
203
  rewrite /IntoLaterN' /IntoLaterN=> ?.
204
  rewrite big_opM_commute; by apply big_sepM_mono.
205
Qed.
206
Global Instance into_laterN_big_sepS n `{Countable A}
207
    (Φ Ψ : A  uPred M) (X : gset A) :
208
209
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ set] x  X, Φ x) ([ set] x  X, Ψ x).
210
Proof.
211
  rewrite /IntoLaterN' /IntoLaterN=> ?.
212
  rewrite big_opS_commute; by apply big_sepS_mono.
213
214
215
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
    (Φ Ψ : A  uPred M) (X : gmultiset A) :
216
217
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ mset] x  X, Φ x) ([ mset] x  X, Ψ x).
218
Proof.
219
  rewrite /IntoLaterN' /IntoLaterN=> ?.
220
  rewrite big_opMS_commute; by apply big_sepMS_mono.
221
222
223
Qed.

(* FromLater *)
224
Global Instance from_laterN_later P : FromLaterN 1 ( P) P | 0.
225
Proof. done. Qed.
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
Global Instance from_laterN_laterN n P : FromLaterN n (^n P) P | 0.
Proof. done. Qed.

(* The instances below are used when stripping a specific number of laters, or
to balance laters in different branches of ∧, ∨ and ∗. *)
Global Instance from_laterN_0 P : FromLaterN 0 P P | 100. (* fallthrough *)
Proof. done. Qed.
Global Instance from_laterN_later_S n P Q :
  FromLaterN n P Q  FromLaterN (S n) ( P) Q.
Proof. by rewrite /FromLaterN=><-. Qed.
Global Instance from_laterN_later_plus n m P Q :
  FromLaterN m P Q  FromLaterN (n + m) (^n P) Q.
Proof. rewrite /FromLaterN=><-. by rewrite laterN_plus. Qed.

Global Instance from_later_and n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed.
Global Instance from_later_or n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed.
Global Instance from_later_sep n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed.
249

250
251
252
253
254
255
256
257
258
259
260
261
Global Instance from_later_always n P Q :
  FromLaterN n P Q  FromLaterN n ( P) ( Q).
Proof. by rewrite /FromLaterN -always_laterN=> ->. Qed.

Global Instance from_later_forall {A} n (Φ Ψ : A  uPred M) :
  ( x, FromLaterN n (Φ x) (Ψ x))  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. rewrite /FromLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance from_later_exist {A} n (Φ Ψ : A  uPred M) :
  Inhabited A  ( x, FromLaterN n (Φ x) (Ψ x)) 
  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. intros ?. rewrite /FromLaterN laterN_exist=> ?. by apply exist_mono. Qed.

262
(* IntoWand *)
263
264
Global Instance wand_weaken_assumption p P1 P2 Q :
  FromAssumption p P2 P1  WandWeaken p P1 Q P2 Q | 0.
265
Proof. by rewrite /WandWeaken /FromAssumption /= =>->. Qed.
266
267
Global Instance wand_weaken_later p P Q P' Q' :
  WandWeaken p P Q P' Q'  WandWeaken' p P Q ( P') ( Q').
Robbert Krebbers's avatar
Robbert Krebbers committed
268
Proof.
269
270
  rewrite /WandWeaken' /WandWeaken=> ->.
  by rewrite always_if_later -later_wand -later_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Qed.
272
273
Global Instance wand_weaken_laterN p n P Q P' Q' :
  WandWeaken p P Q P' Q'  WandWeaken' p P Q (^n P') (^n Q').
Robbert Krebbers's avatar
Robbert Krebbers committed
274
Proof.
275
276
  rewrite /WandWeaken' /WandWeaken=> ->.
  by rewrite always_if_laterN -laterN_wand -laterN_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
277
Qed.
278
279
Global Instance bupd_weaken_laterN p P Q P' Q' :
  WandWeaken false P Q P' Q'  WandWeaken' p P Q (|==> P') (|==> Q').
Robbert Krebbers's avatar
Robbert Krebbers committed
280
281
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->.
282
  apply wand_intro_l. by rewrite always_if_elim bupd_wand_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
Qed.

285
286
Global Instance into_wand_wand p P P' Q Q' :
  WandWeaken p P Q P' Q'  IntoWand p (P - Q) P' Q'.
Robbert Krebbers's avatar
Robbert Krebbers committed
287
Proof. done. Qed.
288
289
Global Instance into_wand_impl p P P' Q Q' :
  WandWeaken p P Q P' Q'  IntoWand p (P  Q) P' Q'.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
Proof. rewrite /WandWeaken /IntoWand /= => <-. apply impl_wand. Qed.

292
293
Global Instance into_wand_iff_l p P P' Q Q' :
  WandWeaken p P Q P' Q'  IntoWand p (P  Q) P' Q'.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_l', impl_wand. Qed.
295
296
Global Instance into_wand_iff_r p P P' Q Q' :
  WandWeaken p Q P Q' P'  IntoWand p (P  Q) Q' P'.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_r', impl_wand. Qed.
298

299
300
Global Instance into_wand_forall {A} p (Φ : A  uPred M) P Q x :
  IntoWand p (Φ x) P Q  IntoWand p ( x, Φ x) P Q.
301
Proof. rewrite /IntoWand=> <-. apply forall_elim. Qed.
302
303
Global Instance into_wand_always p R P Q :
  IntoWand p R P Q  IntoWand p ( R) P Q.
304
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
305

306
307
308
309
310
311
312
Global Instance into_wand_later p R P Q :
  IntoWand p R P Q  IntoWand p ( R) ( P) ( Q).
Proof. rewrite /IntoWand=> ->. by rewrite always_if_later -later_wand. Qed.
Global Instance into_wand_laterN p n R P Q :
  IntoWand p R P Q  IntoWand p (^n R) (^n P) (^n Q).
Proof. rewrite /IntoWand=> ->. by rewrite always_if_laterN -laterN_wand. Qed.

313
Global Instance into_wand_bupd R P Q :
314
  IntoWand false R P Q  IntoWand false (|==> R) (|==> P) (|==> Q).
315
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  rewrite /IntoWand=> ->. apply wand_intro_l. by rewrite bupd_sep wand_elim_r.
317
Qed.
318
319
320
321
322
Global Instance into_wand_bupd_persistent R P Q :
  IntoWand true R P Q  IntoWand true (|==> R) P (|==> Q).
Proof.
  rewrite /IntoWand=>->. apply wand_intro_l. by rewrite bupd_frame_l wand_elim_r.
Qed.
323
324

(* FromAnd *)
325
326
327
328
Global Instance from_and_and p P1 P2 : FromAnd p (P1  P2) P1 P2 | 100.
Proof. by apply mk_from_and_and. Qed.

Global Instance from_and_sep P1 P2 : FromAnd false (P1  P2) P1 P2 | 100.
329
330
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
331
  PersistentP P1  FromAnd true (P1  P2) P1 P2 | 9.
332
333
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
334
  PersistentP P2  FromAnd true (P1  P2) P1 P2 | 10.
335
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

Global Instance from_and_pure p φ ψ : @FromAnd M p ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_from_and_and. by rewrite pure_and. Qed.
Global Instance from_and_always p P Q1 Q2 :
  FromAnd false P Q1 Q2  FromAnd p ( P) ( Q1) ( Q2).
Proof.
  intros. apply mk_from_and_and.
  by rewrite always_and_sep_l' -always_sep -(from_and _ P).
Qed.
Global Instance from_and_later p P Q1 Q2 :
  FromAnd p P Q1 Q2  FromAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?later_and ?later_sep. Qed.
Global Instance from_and_laterN p n P Q1 Q2 :
  FromAnd p P Q1 Q2  FromAnd p (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
351
352
353
354
355
Global Instance from_and_except_0 p P Q1 Q2 :
  FromAnd p P Q1 Q2  FromAnd p ( P) ( Q1) ( Q2).
Proof.
  rewrite /FromAnd=><-. by destruct p; rewrite ?except_0_and ?except_0_sep.
Qed.
356

357
Global Instance from_sep_ownM (a b1 b2 : M) :
358
  IsOp a b1 b2 
359
  FromAnd false (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
360
Proof. intros. by rewrite /FromAnd -ownM_op -is_op. Qed.
361
Global Instance from_sep_ownM_persistent (a b1 b2 : M) :
362
  IsOp a b1 b2  Or (Persistent b1) (Persistent b2) 
363
364
365
  FromAnd true (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
  intros ? Hper; apply mk_from_and_persistent; [destruct Hper; apply _|].
366
  by rewrite -ownM_op -is_op.
367
Qed.
368

369
Global Instance from_sep_bupd P Q1 Q2 :
370
371
372
  FromAnd false P Q1 Q2  FromAnd false (|==> P) (|==> Q1) (|==> Q2).
Proof. rewrite /FromAnd=><-. apply bupd_sep. Qed.

373
374
375
376
377
378
379
380
Global Instance from_and_big_sepL_cons {A} (Φ : nat  A  uPred M) x l :
  FromAnd false ([ list] k  y  x :: l, Φ k y) (Φ 0 x) ([ list] k  y  l, Φ (S k) y).
Proof. by rewrite /FromAnd big_sepL_cons. Qed.
Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat  A  uPred M) x l :
  PersistentP (Φ 0 x) 
  FromAnd true ([ list] k  y  x :: l, Φ k y) (Φ 0 x) ([ list] k  y  l, Φ (S k) y).
Proof. intros. by rewrite /FromAnd big_opL_cons always_and_sep_l. Qed.

381
382
Global Instance from_and_big_sepL_app {A} (Φ : nat  A  uPred M) l1 l2 :
  FromAnd false ([ list] k  y  l1 ++ l2, Φ k y)
383
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
384
Proof. by rewrite /FromAnd big_opL_app. Qed.
385
386
387
388
389
Global Instance from_sep_big_sepL_app_persistent {A} (Φ : nat  A  uPred M) l1 l2 :
  ( k y, PersistentP (Φ k y)) 
  FromAnd true ([ list] k  y  l1 ++ l2, Φ k y)
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
Proof. intros. by rewrite /FromAnd big_opL_app always_and_sep_l. Qed.
390

391
(* FromOp *)
392
393
(* TODO: Worst case there could be a lot of backtracking on these instances,
try to refactor. *)
394
Global Instance is_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
395
  IsOp a b1 b2  IsOp a' b1' b2'  IsOp' (a,a') (b1,b1') (b2,b2').
396
Proof. by constructor. Qed.
397
398
Global Instance is_op_pair_persistent_l {A B : cmraT} (a : A) (a' b1' b2' : B) :
  Persistent a  IsOp a' b1' b2'  IsOp' (a,a') (a,b1') (a,b2').
399
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
400
401
Global Instance is_op_pair_persistent_r {A B : cmraT} (a b1 b2 : A) (a' : B) :
  Persistent a'  IsOp a b1 b2  IsOp' (a,a') (b1,a') (b2,a').
402
403
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.

404
405
Global Instance is_op_Some {A : cmraT} (a : A) b1 b2 :
  IsOp a b1 b2  IsOp' (Some a) (Some b1) (Some b2).
406
Proof. by constructor. Qed.
407
408
409
410
(* This one has a higher precendence than [is_op_op] so we get a [+] instead of
an [⋅]. *)
Global Instance is_op_plus (n1 n2 : nat) : IsOp (n1 + n2) n1 n2.
Proof. done. Qed.
411

412
(* IntoAnd *)
413
Global Instance into_and_sep p P Q : IntoAnd p (P  Q) P Q.
414
415
Proof. by apply mk_into_and_sep. Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
416
417
  IsOp a b1 b2  IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. apply mk_into_and_sep. by rewrite (is_op a) ownM_op. Qed.
418

419
Global Instance into_and_and P Q : IntoAnd true (P  Q) P Q.
420
Proof. done. Qed.
421
422
423
424
425
426
427
Global Instance into_and_and_persistent_l P Q :
  PersistentP P  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed.
Global Instance into_and_and_persistent_r P Q :
  PersistentP Q  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed.

428
429
430
431
432
433
434
Global Instance into_and_pure p φ ψ : @IntoAnd M p ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_into_and_sep. by rewrite pure_and always_and_sep_r. Qed.
Global Instance into_and_always p P Q1 Q2 :
  IntoAnd true P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof.
  rewrite /IntoAnd=>->. destruct p; by rewrite ?always_and always_and_sep_r.
Qed.
435
436
437
Global Instance into_and_later p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed.
438
439
440
Global Instance into_and_laterN n p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
441
442
443
444
445
Global Instance into_and_except_0 p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof.
  rewrite /IntoAnd=>->. by destruct p; rewrite ?except_0_and ?except_0_sep.
Qed.
446

447
448
449
450
451
452
453
454
(* We use [IsCons] and [IsApp] to make sure that [frame_big_sepL_cons] and
[frame_big_sepL_app] cannot be applied repeatedly often when having
[ [∗ list] k ↦ x ∈ ?e, Φ k x] with [?e] an evar. *)
Global Instance into_and_big_sepL_cons {A} p (Φ : nat  A  uPred M) l x l' :
  IsCons l x l' 
  IntoAnd p ([ list] k  y  l, Φ k y)
    (Φ 0 x) ([ list] k  y  l', Φ (S k) y).
Proof. rewrite /IsCons=>->. apply mk_into_and_sep. by rewrite big_sepL_cons. Qed.
455
456
457
Global Instance into_and_big_sepL_app {A} p (Φ : nat  A  uPred M) l l1 l2 :
  IsApp l l1 l2 
  IntoAnd p ([ list] k  y  l, Φ k y)
458
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
459
Proof. rewrite /IsApp=>->. apply mk_into_and_sep. by rewrite big_sepL_app. Qed.
460
461

(* Frame *)
462
463
464
465
Global Instance frame_here p R : Frame p R R True.
Proof. by rewrite /Frame right_id always_if_elim. Qed.
Global Instance frame_here_pure p φ Q : FromPure Q φ  Frame p ⌜φ⌝ Q True.
Proof. rewrite /FromPure /Frame=> ->. by rewrite always_if_elim right_id. Qed.
466

467
Class MakeSep (P Q PQ : uPred M) := make_sep : P  Q  PQ.
468
469
470
471
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
472
Global Instance make_sep_default P Q : MakeSep P Q (P  Q) | 100.
473
Proof. done. Qed.
474
475
476
477
478
479
480
481

Global Instance frame_sep_persistent_l R P1 P2 Q1 Q2 Q' :
  Frame true R P1 Q1  MaybeFrame true R P2 Q2  MakeSep Q1 Q2 Q' 
  Frame true R (P1  P2) Q' | 9.
Proof.
  rewrite /Frame /MaybeFrame /MakeSep /= => <- <- <-.
  rewrite {1}(always_sep_dup ( R)). solve_sep_entails.
Qed.
482
Global Instance frame_sep_l R P1 P2 Q Q' :
483
  Frame false R P1 Q  MakeSep Q P2 Q'  Frame false R (P1  P2) Q' | 9.
484
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
485
486
487
Global Instance frame_sep_r p R P1 P2 Q Q' :
  Frame p R P2 Q  MakeSep P1 Q Q'  Frame p R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc -(comm _ P1) assoc. Qed.
488

489
490
491
492
493
Global Instance frame_big_sepL_cons {A} p (Φ : nat  A  uPred M) R Q l x l' :
  IsCons l x l' 
  Frame p R (Φ 0 x  [ list] k  y  l', Φ (S k) y) Q 
  Frame p R ([ list] k  y  l, Φ k y) Q.
Proof. rewrite /IsCons=>->. by rewrite /Frame big_sepL_cons. Qed.
494
495
Global Instance frame_big_sepL_app {A} p (Φ : nat  A  uPred M) R Q l l1 l2 :
  IsApp l l1 l2 
496
  Frame p R (([ list] k  y  l1, Φ k y) 
497
           [ list] k  y  l2, Φ (length l1 + k) y) Q 
498
  Frame p R ([ list] k  y  l, Φ k y) Q.
499
Proof. rewrite /IsApp=>->. by rewrite /Frame big_opL_app. Qed.
500

501
502
503
504
505
Class MakeAnd (P Q PQ : uPred M) := make_and : P  Q  PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
506
Global Instance make_and_default P Q : MakeAnd P Q (P  Q) | 100.
507
Proof. done. Qed.
508
509
Global Instance frame_and_l p R P1 P2 Q Q' :
  Frame p R P1 Q  MakeAnd Q P2 Q'  Frame p R (P1  P2) Q' | 9.
510
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
511
512
Global Instance frame_and_r p R P1 P2 Q Q' :
  Frame p R P2 Q  MakeAnd P1 Q Q'  Frame p R (P1  P2) Q' | 10.
513
514
515
516
517
518
519
520
521
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.

Class MakeOr (P Q PQ : uPred M) := make_or : P  Q  PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P  Q) | 100.
Proof. done. Qed.
522
523
524
525
526
527
528
529
530
531
532

Global Instance frame_or_persistent_l R P1 P2 Q1 Q2 Q :
  Frame true R P1 Q1  MaybeFrame true R P2 Q2  MakeOr Q1 Q2 Q 
  Frame true R (P1  P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_or_persistent_r R P1 P2 Q1 Q2 Q :
  MaybeFrame true R P2 Q2  MakeOr P1 Q2 Q 
  Frame true R (P1  P2) Q | 10.
Proof.
  rewrite /Frame /MaybeFrame /MakeOr => <- <-. by rewrite sep_or_l sep_elim_r.
Qed.
533
Global Instance frame_or R P1 P2 Q1 Q2 Q :
534
535
  Frame false R P1 Q1  Frame false R P2 Q2  MakeOr Q1 Q2 Q 
  Frame false R (P1  P2) Q.
536
537
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.

538
539
Global Instance frame_wand p R P1 P2 Q2 :
  Frame p R P2 Q2  Frame p R (P1 - P2) (P1 - Q2).
540
541
542
543
544
545
546
547
548
549
550
Proof.
  rewrite /Frame=> ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Class MakeLater (P lP : uPred M) := make_later :  P  lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P ( P) | 100.
Proof. done. Qed.

551
552
Global Instance frame_later p R R' P Q Q' :
  IntoLaterN 1 R' R  Frame p R P Q  MakeLater Q Q'  Frame p R' ( P) Q'.
553
Proof.
554
555
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
  by rewrite always_if_later later_sep.
556
557
558
559
560
561
562
563
Qed.

Class MakeLaterN (n : nat) (P lP : uPred M) := make_laterN : ^n P  lP.
Global Instance make_laterN_true n : MakeLaterN n True True.
Proof. by rewrite /MakeLaterN laterN_True. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (^n P) | 100.
Proof. done. Qed.

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
Global Instance frame_laterN p n R R' P Q Q' :
  IntoLaterN n R' R  Frame p R P Q  MakeLaterN n Q Q'  Frame p R' (^n P) Q'.
Proof.
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
  by rewrite always_if_laterN laterN_sep.
Qed.

Class MakeAlways (P Q : uPred M) := make_always :  P  Q.
Global Instance make_always_true : MakeAlways True True.
Proof. by rewrite /MakeAlways always_pure. Qed.
Global Instance make_always_default P : MakeAlways P ( P) | 100.
Proof. done. Qed.

Global Instance frame_always R P Q Q' :
  Frame true R P Q  MakeAlways Q Q'  Frame true R ( P) Q'.
579
Proof.
580
581
  rewrite /Frame /MakeAlways=> <- <-.
  by rewrite always_sep /= always_always.
582
583
Qed.

584
585
586
587
Class MakeExcept0 (P Q : uPred M) := make_except_0 :  P  Q.
Global Instance make_except_0_True : MakeExcept0 True True.
Proof. by rewrite /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P ( P) | 100.
588
589
Proof. done. Qed.

590
591
Global Instance frame_except_0 p R P Q Q' :
  Frame p R P Q  MakeExcept0 Q Q'  Frame p R ( P) Q'.
592
Proof.
593
  rewrite /Frame /MakeExcept0=><- <-.
594
  by rewrite except_0_sep -(except_0_intro (?p R)).
595
596
Qed.

597
598
Global Instance frame_exist {A} p R (Φ Ψ : A  uPred M) :
  ( a, Frame p R (Φ a) (Ψ a))  Frame p R ( x, Φ x) ( x, Ψ x).
599
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
600
601
Global Instance frame_forall {A} p R (Φ Ψ : A  uPred M) :
  ( a, Frame p R (Φ a) (Ψ a))  Frame p R ( x, Φ x) ( x, Ψ x).
602
603
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.

604
Global Instance frame_bupd p R P Q : Frame p R P Q  Frame p R (|==> P) (|==> Q).
605
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
606

607
608
609
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1  P2) P1 P2.
Proof. done. Qed.
610
Global Instance from_or_bupd P Q1 Q2 :
611
  FromOr P Q1 Q2  FromOr (|==> P) (|==> Q1) (|==> Q2).
612
Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed.
613
614
Global Instance from_or_pure φ ψ : @FromOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
615
616
617
Global Instance from_or_always P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
Proof. rewrite /FromOr=> <-. by rewrite always_or. Qed.
618
619
Global Instance from_or_later P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
620
Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
621
622
623
Global Instance from_or_laterN n P Q1 Q2 :
  FromOr P Q1 Q2  FromOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed.
624
625
626
Global Instance from_or_except_0 P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
Proof. rewrite /FromOr=><-. by rewrite except_0_or. Qed.
627
628
629
630

(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P  Q) P Q.
Proof. done. Qed.
631
632
633
634
635
Global Instance into_or_pure φ ψ : @IntoOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_always P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite always_or. Qed.
636
637
638
Global Instance into_or_later P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
639
640
641
Global Instance into_or_laterN n P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed.
642
643
644
Global Instance into_or_except_0 P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite except_0_or. Qed.
645
646

(* FromExist *)
647
Global Instance from_exist_exist {A} (Φ : A  uPred M): FromExist ( a, Φ a) Φ.
648
Proof. done. Qed.
649
Global Instance from_exist_bupd {A} P (Φ : A  uPred M) :
650
  FromExist P Φ  FromExist (|==> P) (λ a, |==> Φ a)%I.
651
652
653
Proof.
  rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
654
655
656
657
658
Global Instance from_exist_pure {A} (φ : A  Prop) :
  @FromExist M A  x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_always {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
659
Proof. rewrite /FromExist=> <-. by rewrite always_exist. Qed.
660
661
Global Instance from_exist_later {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
662
663
664
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro.
Qed.
665
666
667
668
669
Global Instance from_exist_laterN {A} n P (Φ : A  uPred M) :
  FromExist P Φ  FromExist (^n P) (λ a, ^n (Φ a))%I.
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro.
Qed.
670
671
672
Global Instance from_exist_except_0 {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /FromExist=> <-. by rewrite except_0_exist_2. Qed.
673
674
675
676

(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A  uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
677
678
679
Global Instance into_exist_pure {A} (φ : A  Prop) :
  @IntoExist M A  x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /IntoExist pure_exist. Qed.
680
681
682
Global Instance into_exist_always {A} P (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
683
684
685
686
687
688
Global Instance into_exist_later {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_laterN {A} n P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist (^n P) (λ a, ^n (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed.
689
690
691
Global Instance into_exist_except_0 {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP except_0_exist. Qed.
692

693
694
695
696
697
698
699
(* IntoForall *)
Global Instance into_forall_forall {A} (Φ : A  uPred M) : IntoForall ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_forall_always {A} P (Φ : A  uPred M) :
  IntoForall P Φ  IntoForall ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP always_forall. Qed.

700
701
(* FromModal *)
Global Instance from_modal_later P : FromModal ( P) P.
702
Proof. apply later_intro. Qed.
703
Global Instance from_modal_bupd P : FromModal (|==> P) P.
704
Proof. apply bupd_intro. Qed.