constructions.tex 17.9 KB
Newer Older
1
\section{OFE and COFE constructions}
2

3 4
\subsection{Trivial pointwise lifting}

5
The (C)OFE structure on many types can be easily obtained by pointwise lifting of the structure of the components.
6 7
This is what we do for option $\maybe\cofe$, product $(M_i)_{i \in I}$ (with $I$ some finite index set), sum $\cofe + \cofe'$ and finite partial functions $K \fpfn \monoid$ (with $K$ infinite countable).

Ralf Jung's avatar
Ralf Jung committed
8 9
\subsection{Next (type-level later)}

10
Given a OFE $\cofe$, we define $\latert\cofe$ as follows (using a datatype-like notation to define the type):
Ralf Jung's avatar
Ralf Jung committed
11
\begin{align*}
12
  \latert\cofe \eqdef{}& \latertinj(x:\cofe) \\
Ralf Jung's avatar
Ralf Jung committed
13 14
  \latertinj(x) \nequiv{n} \latertinj(y) \eqdef{}& n = 0 \lor x \nequiv{n-1} y
\end{align*}
15 16
Note that in the definition of the carrier $\latert\cofe$, $\latertinj$ is a constructor (like the constructors in Coq), \ie this is short for $\setComp{\latertinj(x)}{x \in \cofe}$.

17
$\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$.
Ralf Jung's avatar
Ralf Jung committed
18

19

Ralf Jung's avatar
Ralf Jung committed
20 21 22 23
\subsection{Uniform Predicates}

Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows:
\begin{align*}
24 25 26 27 28
\monoid \monnra \SProp \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}
{\All n, \melt, \meltB. \melt \mincl[n] \meltB \Ra \pred(\melt) \nincl{n} \pred(\meltB)} \\
  \UPred(\monoid) \eqdef{}&  \faktor{\monoid \monnra \SProp}{\equiv} \\
  \pred \equiv \predB \eqdef{}& \All m, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff  m \in \predB(\melt)) \\
  \pred \nequiv{n} \predB \eqdef{}& \All m \le n, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff  m \in \predB(\melt))
Ralf Jung's avatar
Ralf Jung committed
29
\end{align*}
30
You can think of uniform predicates as monotone, step-indexed predicates over a CMRA that ``ignore'' invalid elements (as defined by the quotient).
Ralf Jung's avatar
Ralf Jung committed
31

32
$\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.
Ralf Jung's avatar
Ralf Jung committed
33

Ralf Jung's avatar
Ralf Jung committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
It is worth noting that the above quotient admits canonical
representatives. More precisely, one can show that every
equivalence class contains exactly one element $P_0$ such that:
\[ \All n, \melt.  (\mval(\melt) \nincl{n} P_0(\melt)) \Ra n \in P_0(\melt)  \tagH{UPred-canonical}  \]
Intuitively, this says that $P_0$ trivially holds whenever the resource is invalid.
Starting from any element $P$, one can find this canonical
representative by choosing $P_0(\melt) := \setComp{n}{n \in \mval(\melt) \Ra n \in P(\melt)}$.

Hence, as an alternative definition of $\UPred$, we could use the set
of canonical representatives. This alternative definition would
save us from using a quotient. However, the definitions of the various
connectives would get more complicated, because we have to make sure
they all verify \ruleref{UPred-canonical}, which sometimes requires some adjustments. We
would moreover need to prove one more property for every logical
connective.


Ralf Jung's avatar
Ralf Jung committed
51
\clearpage
52
\section{RA and CMRA constructions}
53

Ralf Jung's avatar
Ralf Jung committed
54 55 56
\subsection{Product}
\label{sec:prodm}

57
Given a family $(M_i)_{i \in I}$ of CMRAs ($I$ finite), we construct a CMRA for the product $\prod_{i \in I} M_i$ by lifting everything pointwise.
Ralf Jung's avatar
Ralf Jung committed
58 59 60 61 62

Frame-preserving updates on the $M_i$ lift to the product:
\begin{mathpar}
  \inferH{prod-update}
  {\melt \mupd_{M_i} \meltsB}
63
  {\mapinsert i \melt f \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
Ralf Jung's avatar
Ralf Jung committed
64 65
\end{mathpar}

66 67 68
\subsection{Sum}
\label{sec:summ}

69
The \emph{sum CMRA} $\monoid_1 \csumm \monoid_2$ for any CMRAs $\monoid_1$ and $\monoid_2$ is defined as (again, we use a datatype-like notation):
70
\begin{align*}
71
  \monoid_1 \csumm \monoid_2 \eqdef{}& \cinl(\melt_1:\monoid_1) \mid \cinr(\melt_2:\monoid_2) \mid \mundef \\
72 73
  \mval(\mundef) \eqdef{}& \emptyset \\
  \mval(\cinl(\melt)) \eqdef{}& \mval_1(\melt)  \\
74 75 76 77 78
  \cinl(\melt_1) \mtimes \cinl(\meltB_1) \eqdef{}& \cinl(\melt_1 \mtimes \meltB_1)  \\
%  \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
%  \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt) \\
  \mcore{\cinl(\melt_1)} \eqdef{}& \begin{cases}\mnocore & \text{if $\mcore{\melt_1} = \mnocore$} \\ \cinl({\mcore{\melt_1}}) & \text{otherwise} \end{cases}
\end{align*}
79 80
Above, $\mval_1$ refers to the validity of $\monoid_1$.
The validity, composition and core for $\cinr$ are defined symmetrically.
81
The remaining cases of the composition and core are all $\mundef$.
82

83 84
Notice that we added the artificial ``invalid'' (or ``undefined'') element $\mundef$ to this CMRA just in order to make certain compositions of elements (in this case, $\cinl$ and $\cinr$) invalid.

85 86 87 88 89 90
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
  \infer{x \nequiv{n} y}{\cinl(x) \nequiv{n} \cinl(y)}

  \infer{x \nequiv{n} y}{\cinr(x) \nequiv{n} \cinr(y)}

91
  \axiom{\mundef \nequiv{n} \mundef}
92 93 94
\end{mathpar}


95 96 97 98 99 100 101
We obtain the following frame-preserving updates, as well as their symmetric counterparts:
\begin{mathpar}
  \inferH{sum-update}
  {\melt \mupd_{M_1} \meltsB}
  {\cinl(\melt) \mupd \setComp{ \cinl(\meltB)}{\meltB \in \meltsB}}

  \inferH{sum-swap}
102
  {\All \melt_\f \in M, n. n  \notin \mval(\melt \mtimes \melt_\f) \and \mvalFull(\meltB)}
103 104 105 106
  {\cinl(\melt) \mupd \cinr(\meltB)}
\end{mathpar}
Crucially, the second rule allows us to \emph{swap} the ``side'' of the sum that the CMRA is on if $\mval$ has \emph{no possible frame}.

107 108 109 110 111 112 113 114
\subsection{Option}

The definition of the (CM)RA axioms already lifted the composition operation on $\monoid$ to one on $\maybe\monoid$.
We can easily extend this to a full CMRA by defining a suitable core, namely
\begin{align*}
  \mcore{\mnocore} \eqdef{}& \mnocore & \\
  \mcore{\maybe\melt} \eqdef{}& \mcore\melt & \text{If $\maybe\melt \neq \mnocore$}
\end{align*}
115
Notice that this core is total, as the result always lies in $\maybe\monoid$ (rather than in $\maybe{\mathord{\maybe\monoid}}$).
116

Ralf Jung's avatar
Ralf Jung committed
117 118 119
\subsection{Finite partial function}
\label{sec:fpfnm}

120
Given some infinite countable $K$ and some CMRA $\monoid$, the set of finite partial functions $K \fpfn \monoid$ is equipped with a CMRA structure by lifting everything pointwise.
Ralf Jung's avatar
Ralf Jung committed
121 122 123 124

We obtain the following frame-preserving updates:
\begin{mathpar}
  \inferH{fpfn-alloc-strong}
125
  {\text{$G$ infinite} \and \mvalFull(\melt)}
126
  {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in G}}
Ralf Jung's avatar
Ralf Jung committed
127 128

  \inferH{fpfn-alloc}
129
  {\mvalFull(\melt)}
130
  {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in K}}
Ralf Jung's avatar
Ralf Jung committed
131 132

  \inferH{fpfn-update}
133
  {\melt \mupd_\monoid \meltsB}
134
  {\mapinsert i \melt f] \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
Ralf Jung's avatar
Ralf Jung committed
135
\end{mathpar}
136
Above, $\mvalFull$ refers to the (full) validity of $\monoid$.
137

Ralf Jung's avatar
Ralf Jung committed
138
$K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
139

140 141
\subsection{Agreement}

142
Given some OFE $\cofe$, we define the CMRA $\agm(\cofe)$ as follows:
Ralf Jung's avatar
Ralf Jung committed
143
\begin{align*}
144
  \agm(\cofe) \eqdef{}& \setComp{\melt \in \finpset\cofe}{\melt \neq \emptyset} /\ {\sim} \\[-0.2em]
145 146 147
  \melt \nequiv{n} \meltB \eqdef{}& (\All x \in \melt. \Exists y \in \meltB. x \nequiv{n} y) \land (\All y \in \meltB. \Exists x \in \melt. x \nequiv{n} y) \\
  \textnormal{where }& \melt \sim \meltB \eqdef{} \All n. \melt \nequiv{n} \meltB  \\
~\\
148
%    \All n \in {\melt.V}.\, \melt.x \nequiv{n} \meltB.x \\
149
  \mval(\melt) \eqdef{}& \setComp{n}{ \All x, y \in \melt. x \nequiv{n} y } \\
Ralf Jung's avatar
Ralf Jung committed
150
  \mcore\melt \eqdef{}& \melt \\
151
  \melt \mtimes \meltB \eqdef{}& \melt \cup \meltB
Ralf Jung's avatar
Ralf Jung committed
152
\end{align*}
153
%Note that the carrier $\agm(\cofe)$ is a \emph{record} consisting of the two fields $c$ and $V$.
154

155
$\agm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
156

157 158
We define a non-expansive injection $\aginj$ into $\agm(\cofe)$ as follows:
\[ \aginj(x) \eqdef \set{x} \]
Ralf Jung's avatar
Ralf Jung committed
159 160
There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
\begin{mathpar}
161
  \axiomH{ag-val}{\mvalFull(\aginj(x))}
162

Ralf Jung's avatar
Ralf Jung committed
163
  \axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
164
  
165
  \axiomH{ag-agree}{n \in \mval(\aginj(x) \mtimes \aginj(y)) \Ra x \nequiv{n} y}
Ralf Jung's avatar
Ralf Jung committed
166 167
\end{mathpar}

168

Ralf Jung's avatar
Ralf Jung committed
169 170
\subsection{Exclusive CMRA}

171
Given an OFE $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
Ralf Jung's avatar
Ralf Jung committed
172
\begin{align*}
173
  \exm(\cofe) \eqdef{}& \exinj(\cofe) \mid \mundef \\
174
  \mval(\melt) \eqdef{}& \setComp{n}{\melt \neq \mundef}
Ralf Jung's avatar
Ralf Jung committed
175
\end{align*}
176
All cases of composition go to $\mundef$.
Ralf Jung's avatar
Ralf Jung committed
177
\begin{align*}
178
  \mcore{\exinj(x)} \eqdef{}& \mnocore &
179
  \mcore{\mundef} \eqdef{}& \mundef
Ralf Jung's avatar
Ralf Jung committed
180
\end{align*}
181 182
Remember that $\mnocore$ is the ``dummy'' element in $\maybe\monoid$ indicating (in this case) that $\exinj(x)$ has no core.

Ralf Jung's avatar
Ralf Jung committed
183 184 185
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
  \infer{x \nequiv{n} y}{\exinj(x) \nequiv{n} \exinj(y)}
186

187
  \axiom{\mundef \nequiv{n} \mundef}
Ralf Jung's avatar
Ralf Jung committed
188
\end{mathpar}
189
$\exm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
190 191 192 193 194 195 196 197 198 199

We obtain the following frame-preserving update:
\begin{mathpar}
  \inferH{ex-update}{}
  {\exinj(x) \mupd \exinj(y)}
\end{mathpar}



%TODO: These need syncing with Coq
200 201 202 203 204 205 206 207 208 209 210 211 212 213
% \subsection{Finite Powerset Monoid}

% Given an infinite set $X$, we define a monoid $\textmon{PowFin}$ with carrier $\mathcal{P}^{\textrm{fin}}(X)$ as follows:
% \[
% \melt \cdot \meltB \;\eqdef\; \melt \cup \meltB \quad \mbox{if } \melt \cap \meltB = \emptyset
% \]

% We obtain:
% \begin{mathpar}
% 	\inferH{PowFinUpd}{}
% 		{\emptyset \mupd \{ \{x\} \mid x \in X  \}}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{PowFinUpd}]
Ralf Jung's avatar
Ralf Jung committed
214
% 	Assume some frame $\melt_\f \sep \emptyset$. Since $\melt_\f$ is finite and $X$ is infinite, there exists an $x \notin \melt_\f$.
215 216 217 218 219
% 	Pick that for the result.
% \end{proof}

% The powerset monoids is cancellative.
% \begin{proof}[Proof of cancellativity]
Ralf Jung's avatar
Ralf Jung committed
220 221 222 223
% 	Let $\melt_\f \mtimes \melt = \melt_\f \mtimes \meltB \neq \mzero$.
% 	So we have $\melt_\f \sep \melt$ and $\melt_\f \sep \meltB$, and we have to show $\melt = \meltB$.
% 	Assume $x \in \melt$. Hence $x \in \melt_\f \mtimes \melt$ and thus $x \in \melt_\f \mtimes \meltB$.
% 	By disjointness, $x \notin \melt_\f$ and hence $x \in meltB$.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
% 	The other direction works the same way.
% \end{proof}


% \subsection{Fractional monoid}
% \label{sec:fracm}

% Given a monoid $M$, we define a monoid representing fractional ownership of some piece $\melt \in M$.
% The idea is to preserve all the frame-preserving update that $M$ could have, while additionally being able to do \emph{any} update if we own the full state (as determined by the fraction being $1$).
% Let $\fracm{M}$ be the monoid with carrier $(((0, 1] \cap \mathbb{Q}) \times M) \uplus \{\munit\}$ and multiplication
% \begin{align*}
%  (q, a) \mtimes (q', a') &\eqdef (q + q', a \mtimes a') \qquad \mbox{if $q+q'\le 1$} \\
%  (q, a) \mtimes \munit &\eqdef (q,a) \\
%  \munit \mtimes (q,a) &\eqdef (q,a).
% \end{align*}

% We get the following frame-preserving update.
% \begin{mathpar}
% 	\inferH{FracUpdFull}
% 		{a, b \in M}
% 		{(1, a) \mupd (1, b)}
%   \and\inferH{FracUpdLocal}
% 	  {a \mupd_M B}
% 	  {(q, a) \mupd \{q\} \times B}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{FracUpdFull}]
% Assume some $f \sep (1, a)$. This can only be $f = \munit$, so showing $f \sep (1, b)$ is trivial.
% \end{proof}

% \begin{proof}[Proof of \ruleref{FracUpdLocal}]
% 	Assume some $f \sep (q, a)$. If $f = \munit$, then $f \sep (q, b)$ is trivial for any $b \in B$. Just pick the one we obtain by choosing $\munit_M$ as the frame for $a$.
256
	
Ralf Jung's avatar
Ralf Jung committed
257 258
% 	In the interesting case, we have $f = (q_\f, a_\f)$.
% 	Obtain $b$ such that $b \in B \land b \sep a_\f$.
259 260 261 262 263
% 	Then $(q, b) \sep f$, and we are done.
% \end{proof}

% $\fracm{M}$ is cancellative if $M$ is cancellative.
% \begin{proof}[Proof of cancellativitiy]
Ralf Jung's avatar
Ralf Jung committed
264 265
% If $\melt_\f = \munit$, we are trivially done.
% So let $\melt_\f = (q_\f, \melt_\f')$.
266 267 268 269
% If $\melt = \munit$, then $\meltB = \munit$ as otherwise the fractions could not match up.
% Again, we are trivially done.
% Similar so for $\meltB = \munit$.
% So let $\melt = (q_a, \melt')$ and $\meltB = (q_b, \meltB')$.
Ralf Jung's avatar
Ralf Jung committed
270
% We have $(q_\f + q_a, \melt_\f' \mtimes \melt') = (q_\f + q_b, \melt_\f' \mtimes \meltB')$.
271 272 273 274 275
% We have to show $q_a = q_b$ and $\melt' = \meltB'$.
% The first is trivial, the second follows from cancellativitiy of $M$.
% \end{proof}


Ralf Jung's avatar
Ralf Jung committed
276 277
\subsection{Authoritative}
\label{sec:auth-cmra}
278

Ralf Jung's avatar
Ralf Jung committed
279
Given a CMRA $M$, we construct $\authm(M)$ modeling someone owning an \emph{authoritative} element $\melt$ of $M$, and others potentially owning fragments $\meltB \mincl \melt$ of $\melt$.
Ralf Jung's avatar
Ralf Jung committed
280 281 282 283
We assume that $M$ has a unit $\munit$, and hence its core is total.
(If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.)
\begin{align*}
\authm(M) \eqdef{}& \maybe{\exm(M)} \times M \\
284
\mval( (x, \meltB ) ) \eqdef{}& \setComp{ n }{ n \in \mval(\meltB) \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\
Ralf Jung's avatar
Ralf Jung committed
285 286 287 288 289
  (x_1, \meltB_1) \mtimes (x_2, \meltB_2) \eqdef{}& (x_1 \mtimes x_2, \meltB_2 \mtimes \meltB_2) \\
  \mcore{(x, \meltB)} \eqdef{}& (\mnocore, \mcore\meltB) \\
  (x_1, \meltB_1) \nequiv{n} (x_2, \meltB_2) \eqdef{}& x_1 \nequiv{n} x_2 \land \meltB_1 \nequiv{n} \meltB_2
\end{align*}
Note that $(\mnocore, \munit)$ is the unit and asserts no ownership whatsoever, but $(\exinj(\munit), \munit)$ asserts that the authoritative element is $\munit$.
290

Ralf Jung's avatar
Ralf Jung committed
291 292
Let $\melt, \meltB \in M$.
We write $\authfull \melt$ for full ownership $(\exinj(\melt), \munit)$ and $\authfrag \meltB$ for fragmental ownership $(\mnocore, \meltB)$ and $\authfull \melt , \authfrag \meltB$ for combined ownership $(\exinj(\melt), \meltB)$.
293

Ralf Jung's avatar
Ralf Jung committed
294 295 296 297
The frame-preserving update involves the notion of a \emph{local update}:
\newcommand\lupd{\stackrel{\mathrm l}{\mupd}}
\begin{defn}
  It is possible to do a \emph{local update} from $\melt_1$ and $\meltB_1$ to $\melt_2$ and $\meltB_2$, written $(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)$, if
298
  \[ \All n, \maybe{\melt_\f}. n \in \mval(\melt_1) \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra n \in \mval(\melt_2) \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \]
Ralf Jung's avatar
Ralf Jung committed
299 300
\end{defn}
In other words, the idea is that for every possible frame $\maybe{\melt_\f}$ completing $\meltB_1$ to $\melt_1$, the same frame also completes $\meltB_2$ to $\melt_2$.
301

Ralf Jung's avatar
Ralf Jung committed
302 303 304 305 306 307
We then obtain
\begin{mathpar}
  \inferH{auth-update}
  {(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)}
  {\authfull \melt_1 , \authfrag \meltB_1 \mupd \authfull \melt_2 , \authfrag \meltB_2}
\end{mathpar}
308

309
\subsection{STS with tokens}
Ralf Jung's avatar
Ralf Jung committed
310
\label{sec:sts-cmra}
311

Ralf Jung's avatar
Ralf Jung committed
312
Given a state-transition system~(STS, \ie a directed graph) $(\STSS, {\stsstep} \subseteq \STSS \times \STSS)$, a set of tokens $\STST$, and a labeling $\STSL: \STSS \ra \wp(\STST)$ of \emph{protocol-owned} tokens for each state, we construct an RA modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens.
313

314 315 316 317
The construction follows the idea of STSs as described in CaReSL \cite{caresl}.
We first lift the transition relation to $\STSS \times \wp(\STST)$ (implementing a \emph{law of token conservation}) and define a stepping relation for the \emph{frame} of a given token set:
\begin{align*}
 (s, T) \stsstep (s', T') \eqdef{}& s \stsstep s' \land \STSL(s) \uplus T = \STSL(s') \uplus T' \\
Ralf Jung's avatar
Ralf Jung committed
318
 s \stsfstep{T} s' \eqdef{}& \Exists T_1, T_2. T_1 \disj \STSL(s) \cup T \land (s, T_1) \stsstep (s', T_2)
319
\end{align*}
320

321 322
We further define \emph{closed} sets of states (given a particular set of tokens) as well as the \emph{closure} of a set:
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
323
\STSclsd(S, T) \eqdef{}& \All s \in S. \STSL(s) \disj T \land \left(\All s'. s \stsfstep{T} s' \Ra s' \in S\right) \\
324 325
\upclose(S, T) \eqdef{}& \setComp{ s' \in \STSS}{\Exists s \in S. s \stsftrans{T} s' }
\end{align*}
326

327 328
The STS RA is defined as follows
\begin{align*}
329
  \monoid \eqdef{}& \STSauth(s:\STSS, T:\wp(\STST) \mid \STSL(s) \disj T) \mid{}\\& \STSfrag(S: \wp(\STSS), T: \wp(\STST) \mid \STSclsd(S, T) \land S \neq \emptyset) \mid \mundef \\
330
  \mvalFull(\melt) \eqdef{}& \melt \neq \mundef \\
Ralf Jung's avatar
Ralf Jung committed
331 332
  \STSfrag(S_1, T_1) \mtimes \STSfrag(S_2, T_2) \eqdef{}& \STSfrag(S_1 \cap S_2, T_1 \cup T_2) \qquad\qquad\qquad \text{if $T_1 \disj T_2$ and $S_1 \cap S_2 \neq \emptyset$} \\
  \STSfrag(S, T) \mtimes \STSauth(s, T') \eqdef{}& \STSauth(s, T') \mtimes \STSfrag(S, T) \eqdef \STSauth(s, T \cup T') \qquad \text{if $T \disj T'$ and $s \in S$} \\
333 334 335
  \mcore{\STSfrag(S, T)} \eqdef{}& \STSfrag(\upclose(S, \emptyset), \emptyset) \\
  \mcore{\STSauth(s, T)} \eqdef{}& \STSfrag(\upclose(\set{s}, \emptyset), \emptyset)
\end{align*}
336
The remaining cases are all $\mundef$.
337

338 339 340 341
We will need the following frame-preserving update:
\begin{mathpar}
  \inferH{sts-step}{(s, T) \ststrans (s', T')}
  {\STSauth(s, T) \mupd \STSauth(s', T')}
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  \inferH{sts-weaken}
  {\STSclsd(S_2, T_2) \and S_1 \subseteq S_2 \and T_2 \subseteq T_1}
  {\STSfrag(S_1, T_1) \mupd \STSfrag(S_2, T_2)}
\end{mathpar}

\paragraph{The core is not a homomorphism.}
The core of the STS construction is only satisfying the RA axioms because we are \emph{not} demanding the core to be a homomorphism---all we demand is for the core to be monotone with respect the \ruleref{ra-incl}.

In other words, the following does \emph{not} hold for the STS core as defined above:
\[ \mcore\melt \mtimes \mcore\meltB = \mcore{\melt\mtimes\meltB} \]

To see why, consider the following STS:
\newcommand\st{\textlog{s}}
\newcommand\tok{\textmon{t}}
\begin{center}
  \begin{tikzpicture}[sts]
    \node at (0,0)   (s1) {$\st_1$};
    \node at (3,0)  (s2) {$\st_2$};
    \node at (9,0) (s3) {$\st_3$};
    \node at (6,0)  (s4) {$\st_4$\\$[\tok_1, \tok_2]$};
    
    \path[sts_arrows] (s2) edge  (s4);
    \path[sts_arrows] (s3) edge  (s4);
  \end{tikzpicture}
\end{center}
Now consider the following two elements of the STS RA:
\[ \melt \eqdef \STSfrag(\set{\st_1,\st_2}, \set{\tok_1}) \qquad\qquad
  \meltB \eqdef \STSfrag(\set{\st_1,\st_3}, \set{\tok_2}) \]

We have:
\begin{mathpar}
  {\melt\mtimes\meltB = \STSfrag(\set{\st_1}, \set{\tok_1, \tok_2})}
375

376 377 378 379 380 381 382
  {\mcore\melt = \STSfrag(\set{\st_1, \st_2, \st_4}, \emptyset)}

  {\mcore\meltB = \STSfrag(\set{\st_1, \st_3, \st_4}, \emptyset)}

  {\mcore\melt \mtimes \mcore\meltB = \STSfrag(\set{\st_1, \st_4}, \emptyset) \neq
    \mcore{\melt \mtimes \meltB} = \STSfrag(\set{\st_1}, \emptyset)}
\end{mathpar}
383 384 385 386 387

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "iris"
%%% End: