classes.v 11.7 KB
Newer Older
1
From iris.base_logic Require Export base_logic.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
3 4
Import uPred.

5 6 7 8 9 10 11 12 13 14
(* The Or class is useful for efficiency: instead of having two instances
[P → Q1 → R] and [P → Q2 → R] we could have one instance [P → Or Q1 Q2 → R],
which avoids the need to derive [P] twice. *)
Inductive Or (P1 P2 : Type) :=
  | Or_l : P1  Or P1 P2
  | Or_r : P2  Or P1 P2.
Existing Class Or.
Existing Instance Or_l | 9.
Existing Instance Or_r | 10.

15 16 17
Class FromAssumption {M} (p : bool) (P Q : uPred M) :=
  from_assumption : ?p P  Q.
Arguments from_assumption {_} _ _ _ {_}.
18 19 20
(* No need to restrict Hint Mode, we have a default instance that will always
be used in case of evars *)
Hint Mode FromAssumption + + - - : typeclass_instances.
21 22 23 24 25

Class IntoPure {M} (P : uPred M) (φ : Prop) := into_pure : P  ⌜φ⌝.
Arguments into_pure {_} _ _ {_}.
Hint Mode IntoPure + ! - : typeclass_instances.

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
(* [IntoPureT] is a variant of [IntoPure] with the argument in [Type] to avoid
some shortcoming of unification in Coq's type class search. An example where we
use this workaround is to repair the following instance:

  Global Instance into_exist_and_pure P Q (φ : Prop) :
    IntoPure P φ → IntoExist (P ∧ Q) (λ _ : φ, Q).

Coq is unable to use this instance: [class_apply] -- which is used by type class
search -- fails with the error that it cannot unify [Prop] and [Type]. This is
probably caused because [class_apply] uses an ancient unification algorith. The
[refine] tactic -- which uses a better unification algorithm -- succeeds to
apply the above instance.

Since we do not want to define [Hint Extern] declarations using [refine] for
any instance like [into_exist_and_pure], we factor this out in the class
[IntoPureT]. This way, we only have to declare a [Hint Extern] using [refine]
once, and use [IntoPureT] in any instance like [into_exist_and_pure].

TODO: Report this as a Coq bug, or wait for https://github.com/coq/coq/pull/991
to be finished and merged someday. *)
Class IntoPureT {M} (P : uPred M) (φ : Type) :=
  into_pureT :  ψ : Prop, φ = ψ  IntoPure P ψ.
Lemma into_pureT_hint {M} (P : uPred M) (φ : Prop) : IntoPure P φ  IntoPureT P φ.
Proof. by exists φ. Qed.
Hint Extern 0 (IntoPureT _ _) =>
  notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.

53 54 55 56
Class FromPure {M} (P : uPred M) (φ : Prop) := from_pure : ⌜φ⌝  P.
Arguments from_pure {_} _ _ {_}.
Hint Mode FromPure + ! - : typeclass_instances.

57 58 59 60
Class IntoPersistentP {M} (p : bool) (P Q : uPred M) :=
  into_persistentP : ?p P   Q.
Arguments into_persistentP {_} _ _ _ {_}.
Hint Mode IntoPersistentP + + ! - : typeclass_instances.
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
(* The class [IntoLaterN] has only two instances:

- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN' n P Q → IntoLaterN n P Q], where [IntoLaterN']
  is identical to [IntoLaterN], but computationally is supposed to make
  progress, i.e. its instances should actually strip a later.

The point of using the auxilary class [IntoLaterN'] is to ensure that the
default instance is not applied deeply in the term, which may cause in too many
definitions being unfolded (see issue #55).

For binary connectives we have the following instances:

<<
Robbert Krebbers's avatar
Robbert Krebbers committed
76 77 78
IntoLaterN' n P P'       IntoLaterN n Q Q'
------------------------------------------
     IntoLaterN' n (P /\ Q) (P' /\ Q')
79 80


Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
      IntoLaterN' n Q Q'
-------------------------------
83 84 85
IntoLaterN n (P /\ Q) (P /\ Q')
>>
*)
86 87
Class IntoLaterN {M} (n : nat) (P Q : uPred M) := into_laterN : P  ^n Q.
Arguments into_laterN {_} _ _ _ {_}.
88 89 90 91 92 93 94 95 96
Hint Mode IntoLaterN + - - - : typeclass_instances.

Class IntoLaterN' {M} (n : nat) (P Q : uPred M) :=
  into_laterN' :> IntoLaterN n P Q.
Arguments into_laterN' {_} _ _ _ {_}.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.

Instance into_laterN_default {M} n (P : uPred M) : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.
97 98 99 100 101

Class FromLaterN {M} (n : nat) (P Q : uPred M) := from_laterN : ^n Q  P.
Arguments from_laterN {_} _ _ _ {_}.
Hint Mode FromLaterN + - ! - : typeclass_instances.

102 103 104 105 106 107 108 109 110 111 112 113
Class WandWeaken {M} (p : bool) (P Q P' Q' : uPred M) :=
  wand_weaken : (P - Q)  (?p P' - Q').
Hint Mode WandWeaken + + - - - - : typeclass_instances.

Class WandWeaken' {M} (p : bool) (P Q P' Q' : uPred M) :=
  wand_weaken' :> WandWeaken p P Q P' Q'.
Hint Mode WandWeaken' + + - - ! - : typeclass_instances.
Hint Mode WandWeaken' + + - - - ! : typeclass_instances.

Class IntoWand {M} (p : bool) (R P Q : uPred M) := into_wand : R  ?p P - Q.
Arguments into_wand {_} _ _ _ _ {_}.
Hint Mode IntoWand + + ! - - : typeclass_instances.
114

115 116 117 118 119
Class FromAnd {M} (p : bool) (P Q1 Q2 : uPred M) :=
  from_and : (if p then Q1  Q2 else Q1  Q2)  P.
Arguments from_and {_} _ _ _ _ {_}.
Hint Mode FromAnd + + ! - - : typeclass_instances.
Hint Mode FromAnd + + - ! ! : typeclass_instances. (* For iCombine *)
120

121 122 123
Lemma mk_from_and_and {M} p (P Q1 Q2 : uPred M) :
  (Q1  Q2  P)  FromAnd p P Q1 Q2.
Proof. rewrite /FromAnd=><-. destruct p; auto using sep_and. Qed.
124 125 126 127 128 129 130
Lemma mk_from_and_persistent {M} (P Q1 Q2 : uPred M) :
  Or (PersistentP Q1) (PersistentP Q2)  (Q1  Q2  P)  FromAnd true P Q1 Q2.
Proof.
  intros [?|?] ?; rewrite /FromAnd.
  - by rewrite always_and_sep_l.
  - by rewrite always_and_sep_r.
Qed.
131 132

Class IntoAnd {M} (p : bool) (P Q1 Q2 : uPred M) :=
133
  into_and : P  if p then Q1  Q2 else Q1  Q2.
134 135
Arguments into_and {_} _ _ _ _ {_}.
Hint Mode IntoAnd + + ! - - : typeclass_instances.
136

137 138
Lemma mk_into_and_sep {M} p (P Q1 Q2 : uPred M) :
  (P  Q1  Q2)  IntoAnd p P Q1 Q2.
139
Proof. rewrite /IntoAnd=>->. destruct p; auto using sep_and. Qed.
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
(* There are various versions of [IsOp] with different modes:

- [IsOp a b1 b2]: this one has no mode, it can be used regardless of whether
  any of the arguments is an evar. This class has only one direct instance:
  [IsOp (a ⋅ b) a b].
- [IsOp' a b1 b2]: requires either [a] to start with a constructor, OR [b1] and
  [b2] to start with a constructor. All usual instances should be of this
  class to avoid loops.
- [IsOp'LR a b1 b2]: requires either [a] to start with a constructor. This one
  has just one instance: [IsOp'LR (a ⋅ b) a b] with a very low precendence.
  This is important so that when performing, for example, an [iDestruct] on
  [own γ (q1 + q2)] where [q1] and [q2] are fractions, we actually get
  [own γ q1] and [own γ q2] instead of [own γ ((q1 + q2)/2)] twice.
*)
Class IsOp {A : cmraT} (a b1 b2 : A) := is_op : a  b1  b2.
Arguments is_op {_} _ _ _ {_}.
Hint Mode IsOp + - - - : typeclass_instances.

Instance is_op_op {A : cmraT} (a b : A) : IsOp (a  b) a b | 100.
Proof. by rewrite /IsOp. Qed.

Class IsOp' {A : cmraT} (a b1 b2 : A) := is_op' :> IsOp a b1 b2.
Hint Mode IsOp' + ! - - : typeclass_instances.
Hint Mode IsOp' + - ! ! : typeclass_instances.

Class IsOp'LR {A : cmraT} (a b1 b2 : A) := is_op_lr : IsOp a b1 b2.
Existing Instance is_op_lr | 0.
Hint Mode IsOp'LR + ! - - : typeclass_instances.
Instance is_op_lr_op {A : cmraT} (a b : A) : IsOp'LR (a  b) a b | 0.
Proof. by rewrite /IsOp'LR /IsOp. Qed.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
171

172 173 174 175 176 177 178 179 180 181 182 183 184
Class Frame {M} (p : bool) (R P Q : uPred M) := frame : ?p R  Q  P.
Arguments frame {_ _} _ _ _ {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.

Class MaybeFrame {M} (p : bool) (R P Q : uPred M) := maybe_frame : ?p R  Q  P.
Arguments maybe_frame {_} _ _ _ {_}.
Hint Mode MaybeFrame + + ! ! - : typeclass_instances.

Instance maybe_frame_frame {M} p (R P Q : uPred M) :
  Frame p R P Q  MaybeFrame p R P Q.
Proof. done. Qed.
Instance maybe_frame_default {M} p (R P : uPred M) : MaybeFrame p R P P | 100.
Proof. apply sep_elim_r. Qed.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
185

186 187 188
Class FromOr {M} (P Q1 Q2 : uPred M) := from_or : Q1  Q2  P.
Arguments from_or {_} _ _ _ {_}.
Hint Mode FromOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
189

190 191 192
Class IntoOr {M} (P Q1 Q2 : uPred M) := into_or : P  Q1  Q2.
Arguments into_or {_} _ _ _ {_}.
Hint Mode IntoOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
193

194
Class FromExist {M A} (P : uPred M) (Φ : A  uPred M) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
195
  from_exist : ( x, Φ x)  P.
196 197
Arguments from_exist {_ _} _ _ {_}.
Hint Mode FromExist + - ! - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
198

199
Class IntoExist {M A} (P : uPred M) (Φ : A  uPred M) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
200
  into_exist : P   x, Φ x.
201 202
Arguments into_exist {_ _} _ _ {_}.
Hint Mode IntoExist + - ! - : typeclass_instances.
203

204 205 206 207 208
Class IntoForall {M A} (P : uPred M) (Φ : A  uPred M) :=
  into_forall : P   x, Φ x.
Arguments into_forall {_ _} _ _ {_}.
Hint Mode IntoForall + - ! - : typeclass_instances.

209 210 211
Class FromModal {M} (P Q : uPred M) := from_modal : Q  P.
Arguments from_modal {_} _ _ {_}.
Hint Mode FromModal + ! - : typeclass_instances.
212

213
Class ElimModal {M} (P P' : uPred M) (Q Q' : uPred M) :=
214
  elim_modal : P  (P' - Q')  Q.
215 216 217
Arguments elim_modal {_} _ _ _ _ {_}.
Hint Mode ElimModal + ! - ! - : typeclass_instances.
Hint Mode ElimModal + - ! - ! : typeclass_instances.
218

219
Lemma elim_modal_dummy {M} (P Q : uPred M) : ElimModal P P Q Q.
220
Proof. by rewrite /ElimModal wand_elim_r. Qed.
221

222 223 224
Class IsExcept0 {M} (Q : uPred M) := is_except_0 :  Q  Q.
Arguments is_except_0 {_} _ {_}.
Hint Mode IsExcept0 + ! : typeclass_instances.
225 226 227 228 229 230 231 232 233 234

Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.

Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using `iFrame` or `iNext`, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.

This means that there are [tc_opaque] instances for all proofmode type classes
with the exception of:

- [FromAssumption] used by [iAssumption]
- [Frame] used by [iFrame]
- [IntoLaterN] and [FromLaterN] used by [iNext]
- [IntoPersistentP] used by [iPersistent]
*)
Instance into_pure_tc_opaque {M} (P : uPred M) φ :
  IntoPure P φ  IntoPure (tc_opaque P) φ := id.
Instance from_pure_tc_opaque {M} (P : uPred M) φ :
  FromPure P φ  FromPure (tc_opaque P) φ := id.
Instance from_laterN_tc_opaque {M} n (P Q : uPred M) :
  FromLaterN n P Q  FromLaterN n (tc_opaque P) Q := id.
Instance into_wand_tc_opaque {M} p (R P Q : uPred M) :
  IntoWand p R P Q  IntoWand p (tc_opaque R) P Q := id.
(* Higher precedence than [from_and_sep] so that [iCombine] does not loop. *)
Instance from_and_tc_opaque {M} p (P Q1 Q2 : uPred M) :
  FromAnd p P Q1 Q2  FromAnd p (tc_opaque P) Q1 Q2 | 102 := id.
Instance into_and_tc_opaque {M} p (P Q1 Q2 : uPred M) :
  IntoAnd p P Q1 Q2  IntoAnd p (tc_opaque P) Q1 Q2 := id.
Instance from_or_tc_opaque {M} (P Q1 Q2 : uPred M) :
  FromOr P Q1 Q2  FromOr (tc_opaque P) Q1 Q2 := id.
Instance into_or_tc_opaque {M} (P Q1 Q2 : uPred M) :
  IntoOr P Q1 Q2  IntoOr (tc_opaque P) Q1 Q2 := id.
Instance from_exist_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  FromExist P Φ  FromExist (tc_opaque P) Φ := id.
Instance into_exist_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist (tc_opaque P) Φ := id.
Instance into_forall_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  IntoForall P Φ  IntoForall (tc_opaque P) Φ := id.
Instance from_modal_tc_opaque {M} (P Q : uPred M) :
  FromModal P Q  FromModal (tc_opaque P) Q := id.
Instance elim_modal_tc_opaque {M} (P P' Q Q' : uPred M) :
  ElimModal P P' Q Q'  ElimModal (tc_opaque P) P' Q Q' := id.