cofe.v 14.5 KB
Newer Older
1
From algebra Require Export base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
4

(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
5
Instance: Params (@dist) 3.
6
7
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
8
Hint Extern 0 (_ {_} _) => reflexivity.
9
Hint Extern 0 (_ {_} _) => symmetry; assumption.
10
11
12
13
14
15
16
17

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
  | _ => progress simplify_equality'
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
18
19
  repeat match goal with
  | _ => progress simplify_equality'
20
21
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
22
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
23

Ralf Jung's avatar
Ralf Jung committed
24
Tactic Notation "solve_ne" := intros; solve_proper.
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
28
  chain_cauchy n i : n < i  chain_car i {n} chain_car (S n)
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
31
32
33
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

34
Record CofeMixin A `{Equiv A, Compl A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y;
38
  mixin_conv_compl (c : chain A) n : compl c {n} c (S n)
Robbert Krebbers's avatar
Robbert Krebbers committed
39
40
}.
Class Contractive `{Dist A, Dist B} (f : A -> B) :=
41
  contractive n x y : ( i, i < n  x {i} y)  f x {n} f y.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
44
45
46
47
48

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
49
  cofe_mixin : CofeMixin cofe_car
Robbert Krebbers's avatar
Robbert Krebbers committed
50
}.
51
Arguments CofeT {_ _ _ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
Add Printing Constructor cofeT.
53
54
55
56
57
58
59
60
61
62
63
Existing Instances cofe_equiv cofe_dist cofe_compl.
Arguments cofe_car : simpl never.
Arguments cofe_equiv : simpl never.
Arguments cofe_dist : simpl never.
Arguments cofe_compl : simpl never.
Arguments cofe_mixin : simpl never.

(** Lifting properties from the mixin *)
Section cofe_mixin.
  Context {A : cofeT}.
  Implicit Types x y : A.
64
  Lemma equiv_dist x y : x  y   n, x {n} y.
65
66
67
  Proof. apply (mixin_equiv_dist _ (cofe_mixin A)). Qed.
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
  Proof. apply (mixin_dist_equivalence _ (cofe_mixin A)). Qed.
68
  Lemma dist_S n x y : x {S n} y  x {n} y.
69
  Proof. apply (mixin_dist_S _ (cofe_mixin A)). Qed.
70
  Lemma conv_compl (c : chain A) n : compl c {n} c (S n).
71
72
73
  Proof. apply (mixin_conv_compl _ (cofe_mixin A)). Qed.
End cofe_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
(** General properties *)
Section cofe.
76
77
  Context {A : cofeT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
79
80
81
82
83
84
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
    * by intros x; rewrite equiv_dist.
    * by intros x y; rewrite !equiv_dist.
    * by intros x y z; rewrite !equiv_dist; intros; transitivity y.
  Qed.
85
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
    * by transitivity x1; [|transitivity y1].
    * by transitivity x2; [|transitivity y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  Qed.
91
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
97
  Lemma dist_le (x y : A) n n' : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  Proof. induction 2; eauto using dist_S. Qed.
99
  Instance ne_proper {B : cofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
102
  Instance ne_proper_2 {B C : cofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  Qed.
109
  Lemma contractive_S {B : cofeT} (f : A  B) `{!Contractive f} n x y :
110
111
    x {n} y  f x {S n} f y.
  Proof. eauto using contractive, dist_le with omega. Qed.
112
113
114
  Lemma contractive_0 {B : cofeT} (f : A  B) `{!Contractive f} x y :
    f x {0} f y.
  Proof. eauto using contractive with omega. Qed.
115
  Global Instance contractive_ne {B : cofeT} (f : A  B) `{!Contractive f} n :
116
    Proper (dist n ==> dist n) f | 100.
117
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
118
  Global Instance contractive_proper {B : cofeT} (f : A  B) `{!Contractive f} :
119
    Proper (() ==> ()) f | 100 := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
121
End cofe.

Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
126
Next Obligation. by intros ? A ? B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
127

Robbert Krebbers's avatar
Robbert Krebbers committed
128
(** Timeless elements *)
129
Class Timeless {A : cofeT} (x : A) := timeless y : x {0} y  x  y.
130
Arguments timeless {_} _ {_} _ _.
131
Lemma timeless_iff {A : cofeT} (x y : A) n : Timeless x  x  y  x {n} y.
132
133
Proof.
  split; intros; [by apply equiv_dist|].
134
  apply (timeless _), dist_le with n; auto with lia.
135
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
136

Robbert Krebbers's avatar
Robbert Krebbers committed
137
(** Fixpoint *)
138
Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A  A)
139
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Next Obligation.
141
  intros A ? f ? n. induction n as [|n IH]; intros [|i] ?; simpl; try omega.
142
143
  * apply (contractive_0 f).
  * apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Qed.
145
Program Definition fixpoint {A : cofeT} `{Inhabited A} (f : A  A)
146
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148

Section fixpoint.
149
  Context {A : cofeT} `{Inhabited A} (f : A  A) `{!Contractive f}.
150
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Proof.
152
    apply equiv_dist=>n; rewrite /fixpoint (conv_compl (fixpoint_chain f) n) //.
153
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  Qed.
155
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
156
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  Proof.
158
159
160
161
    intros Hfg. rewrite /fixpoint
      (conv_compl (fixpoint_chain f) n) (conv_compl (fixpoint_chain g) n) /=.
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  Qed.
163
164
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
167
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
170
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
171
172
173
174
175
176
177
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

178
179
180
181
182
Section cofe_mor.
  Context {A B : cofeT}.
  Global Instance cofe_mor_proper (f : cofeMor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, cofe_mor_ne. Qed.
  Instance cofe_mor_equiv : Equiv (cofeMor A B) := λ f g,  x, f x  g x.
183
  Instance cofe_mor_dist : Dist (cofeMor A B) := λ n f g,  x, f x {n} g x.
184
185
186
187
188
189
  Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
    {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Instance cofe_mor_compl : Compl (cofeMor A B) := λ c,
    {| cofe_mor_car x := compl (fun_chain c x) |}.
  Next Obligation.
190
191
    intros c n x y Hx. by rewrite (conv_compl (fun_chain c x) n)
      (conv_compl (fun_chain c y) n) /= Hx.
192
193
194
195
  Qed.
  Definition cofe_mor_cofe_mixin : CofeMixin (cofeMor A B).
  Proof.
    split.
196
197
    * intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist; intros n; apply Hfg.
198
199
200
201
202
203
    * intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; transitivity (g x).
    * by intros n f g ? x; apply dist_S.
    * intros c n x; simpl.
204
      by rewrite (conv_compl (fun_chain c x) n) /=.
205
206
207
208
209
210
211
212
213
214
215
216
217
  Qed.
  Canonical Structure cofe_mor : cofeT := CofeT cofe_mor_cofe_mixin.

  Global Instance cofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
  Global Instance cofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
  Lemma cofe_mor_ext (f g : cofeMor A B) : f  g   x, f x  g x.
  Proof. done. Qed.
End cofe_mor.

Arguments cofe_mor : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Infix "-n>" := cofe_mor (at level 45, right associativity).
219
220
Instance cofe_more_inhabited {A B : cofeT} `{Inhabited B} :
  Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
224
225
226
227
228
229

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
230
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
233

(** unit *)
234
235
236
237
238
239
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
  Instance unit_compl : Compl unit := λ _, ().
  Definition unit_cofe_mixin : CofeMixin unit.
  Proof. by repeat split; try exists 0. Qed.
  Canonical Structure unitC : cofeT := CofeT unit_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
  Global Instance unit_timeless (x : ()) : Timeless x.
  Proof. done. Qed.
242
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244

(** Product *)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
Section product.
  Context {A B : cofeT}.

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
  Instance prod_compl : Compl (A * B) := λ c,
    (compl (chain_map fst c), compl (chain_map snd c)).
  Definition prod_cofe_mixin : CofeMixin (A * B).
  Proof.
    split.
    * intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
      rewrite !equiv_dist; naive_solver.
    * apply _.
    * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
    * intros c n; split. apply (conv_compl (chain_map fst c) n).
      apply (conv_compl (chain_map snd c) n).
  Qed.
  Canonical Structure prodC : cofeT := CofeT prod_cofe_mixin.
  Global Instance pair_timeless (x : A) (y : B) :
    Timeless x  Timeless y  Timeless (x,y).
  Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

Instance prod_map_ne {A A' B B' : cofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
279
280
281
282
283
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

284
285
286
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
287
  Instance discrete_dist : Dist A := λ n x y, x  y.
288
  Instance discrete_compl : Compl A := λ c, c 1.
289
  Definition discrete_cofe_mixin : CofeMixin A.
290
291
  Proof.
    split.
292
293
    * intros x y; split; [done|intros Hn; apply (Hn 0)].
    * done.
294
    * done.
295
296
    * intros c n. rewrite /compl /discrete_compl /=.
      symmetry; apply (chain_cauchy c 0 (S n)); omega.
297
  Qed.
298
299
  Definition discreteC : cofeT := CofeT discrete_cofe_mixin.
  Global Instance discrete_timeless (x : A) : Timeless (x : discreteC).
Robbert Krebbers's avatar
Robbert Krebbers committed
300
  Proof. by intros y. Qed.
301
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Arguments discreteC _ {_ _}.
303

Robbert Krebbers's avatar
Robbert Krebbers committed
304
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
305
306
307
Instance leibnizC_leibniz : LeibnizEquiv (leibnizC A).
Proof. by intros A x y. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
310

311
(** Later *)
312
Inductive later (A : Type) : Type := Next { later_car : A }.
313
Add Printing Constructor later.
314
Arguments Next {_} _.
315
Arguments later_car {_} _.
316
Lemma later_eta {A} (x : later A) : Next (later_car x) = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
Proof. by destruct x. Qed.
318

319
Section later.
320
321
322
  Context {A : cofeT}.
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
323
    match n with 0 => True | S n => later_car x {n} later_car y end.
324
  Program Definition later_chain (c : chain (later A)) : chain A :=
325
    {| chain_car n := later_car (c (S n)) |}.
326
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
327
  Instance later_compl : Compl (later A) := λ c, Next (compl (later_chain c)).
328
  Definition later_cofe_mixin : CofeMixin (later A).
329
330
331
332
333
334
335
336
337
338
339
  Proof.
    split.
    * intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
    * intros [|n]; [by split|split]; unfold dist, later_dist.
      + by intros [x].
      + by intros [x] [y].
      + by intros [x] [y] [z] ??; transitivity y.
    * intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
    * intros c [|n]; [done|by apply (conv_compl (later_chain c) n)].
  Qed.
340
  Canonical Structure laterC : cofeT := CofeT later_cofe_mixin.
341
342
  Global Instance Next_contractive : Contractive (@Next A).
  Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
343
  Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Robbert Krebbers's avatar
Robbert Krebbers committed
344
  Proof. by intros x y. Qed.
345
End later.
346
347
348
349

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
350
  Next (f (later_car x)).
351
352
353
354
355
356
357
358
359
360
361
362
Instance later_map_ne {A B : cofeT} (f : A  B) n :
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
363
Proof. intros [|n] f g Hf n'; [done|]; apply Hf; lia. Qed.