classes.v 10.3 KB
Newer Older
1
From iris.base_logic Require Export base_logic.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
3 4
Import uPred.

5 6 7 8 9 10 11 12 13 14
(* The Or class is useful for efficiency: instead of having two instances
[P → Q1 → R] and [P → Q2 → R] we could have one instance [P → Or Q1 Q2 → R],
which avoids the need to derive [P] twice. *)
Inductive Or (P1 P2 : Type) :=
  | Or_l : P1  Or P1 P2
  | Or_r : P2  Or P1 P2.
Existing Class Or.
Existing Instance Or_l | 9.
Existing Instance Or_r | 10.

15 16 17
Class FromAssumption {M} (p : bool) (P Q : uPred M) :=
  from_assumption : ?p P  Q.
Arguments from_assumption {_} _ _ _ {_}.
18 19 20
(* No need to restrict Hint Mode, we have a default instance that will always
be used in case of evars *)
Hint Mode FromAssumption + + - - : typeclass_instances.
21 22 23 24 25 26 27 28 29

Class IntoPure {M} (P : uPred M) (φ : Prop) := into_pure : P  ⌜φ⌝.
Arguments into_pure {_} _ _ {_}.
Hint Mode IntoPure + ! - : typeclass_instances.

Class FromPure {M} (P : uPred M) (φ : Prop) := from_pure : ⌜φ⌝  P.
Arguments from_pure {_} _ _ {_}.
Hint Mode FromPure + ! - : typeclass_instances.

30 31 32 33
Class IntoPersistentP {M} (p : bool) (P Q : uPred M) :=
  into_persistentP : ?p P   Q.
Arguments into_persistentP {_} _ _ _ {_}.
Hint Mode IntoPersistentP + + ! - : typeclass_instances.
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48
(* The class [IntoLaterN] has only two instances:

- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN' n P Q → IntoLaterN n P Q], where [IntoLaterN']
  is identical to [IntoLaterN], but computationally is supposed to make
  progress, i.e. its instances should actually strip a later.

The point of using the auxilary class [IntoLaterN'] is to ensure that the
default instance is not applied deeply in the term, which may cause in too many
definitions being unfolded (see issue #55).

For binary connectives we have the following instances:

<<
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
IntoLaterN' n P P'       IntoLaterN n Q Q'
------------------------------------------
     IntoLaterN' n (P /\ Q) (P' /\ Q')
52 53


Robbert Krebbers's avatar
Robbert Krebbers committed
54 55
      IntoLaterN' n Q Q'
-------------------------------
56 57 58
IntoLaterN n (P /\ Q) (P /\ Q')
>>
*)
59 60
Class IntoLaterN {M} (n : nat) (P Q : uPred M) := into_laterN : P  ^n Q.
Arguments into_laterN {_} _ _ _ {_}.
61 62 63 64 65 66 67 68 69
Hint Mode IntoLaterN + - - - : typeclass_instances.

Class IntoLaterN' {M} (n : nat) (P Q : uPred M) :=
  into_laterN' :> IntoLaterN n P Q.
Arguments into_laterN' {_} _ _ _ {_}.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.

Instance into_laterN_default {M} n (P : uPred M) : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.
70 71 72 73 74

Class FromLaterN {M} (n : nat) (P Q : uPred M) := from_laterN : ^n Q  P.
Arguments from_laterN {_} _ _ _ {_}.
Hint Mode FromLaterN + - ! - : typeclass_instances.

75 76 77 78 79 80 81 82 83 84 85 86
Class WandWeaken {M} (p : bool) (P Q P' Q' : uPred M) :=
  wand_weaken : (P - Q)  (?p P' - Q').
Hint Mode WandWeaken + + - - - - : typeclass_instances.

Class WandWeaken' {M} (p : bool) (P Q P' Q' : uPred M) :=
  wand_weaken' :> WandWeaken p P Q P' Q'.
Hint Mode WandWeaken' + + - - ! - : typeclass_instances.
Hint Mode WandWeaken' + + - - - ! : typeclass_instances.

Class IntoWand {M} (p : bool) (R P Q : uPred M) := into_wand : R  ?p P - Q.
Arguments into_wand {_} _ _ _ _ {_}.
Hint Mode IntoWand + + ! - - : typeclass_instances.
87

88 89 90 91 92
Class FromAnd {M} (p : bool) (P Q1 Q2 : uPred M) :=
  from_and : (if p then Q1  Q2 else Q1  Q2)  P.
Arguments from_and {_} _ _ _ _ {_}.
Hint Mode FromAnd + + ! - - : typeclass_instances.
Hint Mode FromAnd + + - ! ! : typeclass_instances. (* For iCombine *)
93

94 95 96
Lemma mk_from_and_and {M} p (P Q1 Q2 : uPred M) :
  (Q1  Q2  P)  FromAnd p P Q1 Q2.
Proof. rewrite /FromAnd=><-. destruct p; auto using sep_and. Qed.
97 98 99 100 101 102 103
Lemma mk_from_and_persistent {M} (P Q1 Q2 : uPred M) :
  Or (PersistentP Q1) (PersistentP Q2)  (Q1  Q2  P)  FromAnd true P Q1 Q2.
Proof.
  intros [?|?] ?; rewrite /FromAnd.
  - by rewrite always_and_sep_l.
  - by rewrite always_and_sep_r.
Qed.
104 105

Class IntoAnd {M} (p : bool) (P Q1 Q2 : uPred M) :=
106
  into_and : P  if p then Q1  Q2 else Q1  Q2.
107 108
Arguments into_and {_} _ _ _ _ {_}.
Hint Mode IntoAnd + + ! - - : typeclass_instances.
109

110 111
Lemma mk_into_and_sep {M} p (P Q1 Q2 : uPred M) :
  (P  Q1  Q2)  IntoAnd p P Q1 Q2.
112
Proof. rewrite /IntoAnd=>->. destruct p; auto using sep_and. Qed.
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
(* There are various versions of [IsOp] with different modes:

- [IsOp a b1 b2]: this one has no mode, it can be used regardless of whether
  any of the arguments is an evar. This class has only one direct instance:
  [IsOp (a ⋅ b) a b].
- [IsOp' a b1 b2]: requires either [a] to start with a constructor, OR [b1] and
  [b2] to start with a constructor. All usual instances should be of this
  class to avoid loops.
- [IsOp'LR a b1 b2]: requires either [a] to start with a constructor. This one
  has just one instance: [IsOp'LR (a ⋅ b) a b] with a very low precendence.
  This is important so that when performing, for example, an [iDestruct] on
  [own γ (q1 + q2)] where [q1] and [q2] are fractions, we actually get
  [own γ q1] and [own γ q2] instead of [own γ ((q1 + q2)/2)] twice.
*)
Class IsOp {A : cmraT} (a b1 b2 : A) := is_op : a  b1  b2.
Arguments is_op {_} _ _ _ {_}.
Hint Mode IsOp + - - - : typeclass_instances.

Instance is_op_op {A : cmraT} (a b : A) : IsOp (a  b) a b | 100.
Proof. by rewrite /IsOp. Qed.

Class IsOp' {A : cmraT} (a b1 b2 : A) := is_op' :> IsOp a b1 b2.
Hint Mode IsOp' + ! - - : typeclass_instances.
Hint Mode IsOp' + - ! ! : typeclass_instances.

Class IsOp'LR {A : cmraT} (a b1 b2 : A) := is_op_lr : IsOp a b1 b2.
Existing Instance is_op_lr | 0.
Hint Mode IsOp'LR + ! - - : typeclass_instances.
Instance is_op_lr_op {A : cmraT} (a b : A) : IsOp'LR (a  b) a b | 0.
Proof. by rewrite /IsOp'LR /IsOp. Qed.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
144

145 146 147 148 149 150 151 152 153 154 155 156 157
Class Frame {M} (p : bool) (R P Q : uPred M) := frame : ?p R  Q  P.
Arguments frame {_ _} _ _ _ {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.

Class MaybeFrame {M} (p : bool) (R P Q : uPred M) := maybe_frame : ?p R  Q  P.
Arguments maybe_frame {_} _ _ _ {_}.
Hint Mode MaybeFrame + + ! ! - : typeclass_instances.

Instance maybe_frame_frame {M} p (R P Q : uPred M) :
  Frame p R P Q  MaybeFrame p R P Q.
Proof. done. Qed.
Instance maybe_frame_default {M} p (R P : uPred M) : MaybeFrame p R P P | 100.
Proof. apply sep_elim_r. Qed.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
158

159 160 161
Class FromOr {M} (P Q1 Q2 : uPred M) := from_or : Q1  Q2  P.
Arguments from_or {_} _ _ _ {_}.
Hint Mode FromOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
162

163 164 165
Class IntoOr {M} (P Q1 Q2 : uPred M) := into_or : P  Q1  Q2.
Arguments into_or {_} _ _ _ {_}.
Hint Mode IntoOr + ! - - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
166

167
Class FromExist {M A} (P : uPred M) (Φ : A  uPred M) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
168
  from_exist : ( x, Φ x)  P.
169 170
Arguments from_exist {_ _} _ _ {_}.
Hint Mode FromExist + - ! - : typeclass_instances.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
171

172
Class IntoExist {M A} (P : uPred M) (Φ : A  uPred M) :=
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
173
  into_exist : P   x, Φ x.
174 175
Arguments into_exist {_ _} _ _ {_}.
Hint Mode IntoExist + - ! - : typeclass_instances.
176

177 178 179 180 181
Class IntoForall {M A} (P : uPred M) (Φ : A  uPred M) :=
  into_forall : P   x, Φ x.
Arguments into_forall {_ _} _ _ {_}.
Hint Mode IntoForall + - ! - : typeclass_instances.

182 183 184
Class FromModal {M} (P Q : uPred M) := from_modal : Q  P.
Arguments from_modal {_} _ _ {_}.
Hint Mode FromModal + ! - : typeclass_instances.
185

186
Class ElimModal {M} (P P' : uPred M) (Q Q' : uPred M) :=
187
  elim_modal : P  (P' - Q')  Q.
188 189 190
Arguments elim_modal {_} _ _ _ _ {_}.
Hint Mode ElimModal + ! - ! - : typeclass_instances.
Hint Mode ElimModal + - ! - ! : typeclass_instances.
191

192
Lemma elim_modal_dummy {M} (P Q : uPred M) : ElimModal P P Q Q.
193
Proof. by rewrite /ElimModal wand_elim_r. Qed.
194

195 196 197
Class IsExcept0 {M} (Q : uPred M) := is_except_0 :  Q  Q.
Arguments is_except_0 {_} _ {_}.
Hint Mode IsExcept0 + ! : typeclass_instances.
198 199 200 201 202 203 204 205 206 207

Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.

Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using `iFrame` or `iNext`, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.

This means that there are [tc_opaque] instances for all proofmode type classes
with the exception of:

- [FromAssumption] used by [iAssumption]
- [Frame] used by [iFrame]
- [IntoLaterN] and [FromLaterN] used by [iNext]
- [IntoPersistentP] used by [iPersistent]
*)
Instance into_pure_tc_opaque {M} (P : uPred M) φ :
  IntoPure P φ  IntoPure (tc_opaque P) φ := id.
Instance from_pure_tc_opaque {M} (P : uPred M) φ :
  FromPure P φ  FromPure (tc_opaque P) φ := id.
Instance from_laterN_tc_opaque {M} n (P Q : uPred M) :
  FromLaterN n P Q  FromLaterN n (tc_opaque P) Q := id.
Instance into_wand_tc_opaque {M} p (R P Q : uPred M) :
  IntoWand p R P Q  IntoWand p (tc_opaque R) P Q := id.
(* Higher precedence than [from_and_sep] so that [iCombine] does not loop. *)
Instance from_and_tc_opaque {M} p (P Q1 Q2 : uPred M) :
  FromAnd p P Q1 Q2  FromAnd p (tc_opaque P) Q1 Q2 | 102 := id.
Instance into_and_tc_opaque {M} p (P Q1 Q2 : uPred M) :
  IntoAnd p P Q1 Q2  IntoAnd p (tc_opaque P) Q1 Q2 := id.
Instance from_or_tc_opaque {M} (P Q1 Q2 : uPred M) :
  FromOr P Q1 Q2  FromOr (tc_opaque P) Q1 Q2 := id.
Instance into_or_tc_opaque {M} (P Q1 Q2 : uPred M) :
  IntoOr P Q1 Q2  IntoOr (tc_opaque P) Q1 Q2 := id.
Instance from_exist_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  FromExist P Φ  FromExist (tc_opaque P) Φ := id.
Instance into_exist_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist (tc_opaque P) Φ := id.
Instance into_forall_tc_opaque {M A} (P : uPred M) (Φ : A  uPred M) :
  IntoForall P Φ  IntoForall (tc_opaque P) Φ := id.
Instance from_modal_tc_opaque {M} (P Q : uPred M) :
  FromModal P Q  FromModal (tc_opaque P) Q := id.
Instance elim_modal_tc_opaque {M} (P P' Q Q' : uPred M) :
  ElimModal P P' Q Q'  ElimModal (tc_opaque P) P' Q Q' := id.