collections.v 29.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From iris.prelude Require Export base tactics orders.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
Typeclasses Opaque collection_disjoint collection_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16

(** * Basic theorems *)
Section simple_collection.
  Context `{SimpleCollection A C}.
17
18
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
21
22
23
24
25
26
27
28
29

  Lemma elem_of_empty x : x    False.
  Proof. split. apply not_elem_of_empty. done. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
31
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
39
40
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros ??. rewrite !elem_of_disjoint; naive_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. rewrite elem_of_disjoint; intros x; by rewrite elem_of_empty. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. rewrite (symmetry_iff _); apply disjoint_empty_l. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof.
    rewrite elem_of_disjoint; setoid_rewrite elem_of_singleton; naive_solver.
  Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. rewrite (symmetry_iff ()). apply disjoint_singleton_l. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof.
    rewrite !elem_of_disjoint; setoid_rewrite elem_of_union; naive_solver.
  Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. rewrite !(symmetry_iff () X). apply disjoint_union_l. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
63
64
65
66
67
68
69
70
71
72
73
74
75
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
76
77
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79

80
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  Proof. by repeat intro; subst. Qed.
82
  Global Instance elem_of_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
83
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  Proof. intros ???; subst. firstorder. Qed.
Ralf Jung's avatar
Ralf Jung committed
85
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
  Proof.
    split.
90
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
Robbert Krebbers's avatar
Robbert Krebbers committed
91
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
92
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
      intros. apply elem_of_union_r; auto.
  Qed.
95
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.
End simple_collection.

120
121
122
123
124
125
126
127
128
129
130
131
132
133
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

134
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
217
218
219
220
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
  Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed.
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
290
  try fast_done;
291
292
293
294
295
296
297
298
299
300
301
302
303
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

304
305
306
307
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

308
309
310
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
312
313
314
315
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
316
317
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
319
320
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
321
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
322
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
323
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
  Qed.
325
326
327
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
328
329
330
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
End of_option_list.

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
349
350
351
352
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
353
354
End list_unfold.

355
(** * Guard *)
Robbert Krebbers's avatar
Robbert Krebbers committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
375
376
377
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
379
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
380
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
381
382
383
384
385
End collection_monad_base.

(** * More theorems *)
Section collection.
  Context `{Collection A C}.
386
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
388

  Global Instance: Lattice C.
389
  Proof. split. apply _. firstorder auto. set_solver. Qed.
390
391
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
392
393
394
395
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
396
  Lemma non_empty_inhabited x X : x  X  X  .
397
  Proof. set_solver. Qed.
398
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
399
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
401
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
403
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  Lemma difference_diag X : X  X  .
405
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
407
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
409
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
411
  Proof. set_solver. Qed.
412
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
413
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
432
433
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
436
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
437
    Context `{ (x : A) (X : C), Decision (x  X)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
441
442
443
444
445
446
447
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
448
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
449
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
450
    Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
  End dec.
End collection.

(** * Quantifiers *)
Section quantifiers.
  Context `{SimpleCollection A B} (P : A  Prop).

  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
469
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
470
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
471
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
472
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
473
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
474
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
475
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
477
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
479

  Lemma set_Exists_empty : ¬set_Exists .
480
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
481
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
482
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
484
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
485
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
486
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
488
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
489
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
End quantifiers.

Section more_quantifiers.
  Context `{SimpleCollection A B}.

  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.

(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).

Section fresh.
  Context `{FreshSpec A C}.
519
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
520

521
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
522
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
523
524
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
525
  Proof.
526
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
Robbert Krebbers's avatar
Robbert Krebbers committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    apply IH. by rewrite E.
  Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
546
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
547
548
549
550
551
552
553

  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
554
    apply IH in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
556
557
558
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
559
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
563
564
565
566
567
568
569
570
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End fresh.

(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
  Context `{CollectionMonad M}.

571
572
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
573
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
574
575
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
576
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
577
578
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
579
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
580
581
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
582
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
583
584
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
585
  Proof. intros X Y ?; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
586
587
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
588
  Proof. intros X Y [??]; split; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
589
590

  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
591
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
592
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
593
  Proof. set_solver. Qed.
594
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
595
    g  f <$> X  g <$> (f <$> X).
596
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
597
598
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
599
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
600
601
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
602
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
603
604
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
605
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
606
607
608
609
610

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
611
    - revert l. induction k; set_solver by eauto.
612
    - induction 1; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
613
614
615
  Qed.
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
    l  mapM f k  length l = length k.
616
  Proof. revert l; induction k; set_solver by eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
618
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
619
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
622
623
624
625
626
627
628
629
630
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
End collection_monad.
631
632
633
634
635
636

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
637
638
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
639
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
640
641
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
642
643
644
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
645
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
646
647
648
649
650
651
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
652
  Proof. intros [l ?]; exists l; set_solver. Qed.
653
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
654
  Proof. intros [l ?]; exists l; set_solver. Qed.
655
656
657
658
659
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
660
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
661
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
662
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
663
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
664
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
665
666
667
668
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
669
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
670
  Qed.
671
End more_finite.