cmra.v 52.1 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
6
7
8
9
10
11

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

12
13
14
15
16
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
17
18
19
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
20
Hint Extern 0 (_  _) => reflexivity.
21
22
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
25
Notation "✓{ n } x" := (validN n x)
26
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
30
Notation "✓ x" := (valid x) (at level 20) : C_scope.
31

32
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Notation "x ≼{ n } y" := (includedN n x y)
34
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance: Params (@includedN) 4.
36
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  (* setoids *)
40
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
43
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* valid *)
45
  mixin_cmra_valid_validN x :  x   n, {n} x;
46
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  (* monoid *)
48
49
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
52
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
53
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
54
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
55
56
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
57
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
58
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60
(** Bundeled version *)
61
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_ofe_mixin : OfeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
74
Notation CMRAT A m m' := (CMRAT' A m m' A).
75
76
77
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Arguments cmra_pcore : simpl never.
79
Arguments cmra_op : simpl never.
80
Arguments cmra_valid : simpl never.
81
Arguments cmra_validN : simpl never.
82
Arguments cmra_ofe_mixin : simpl never.
83
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
Add Printing Constructor cmraT.
85
86
87
88
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
89
90
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92
93
94
95
96
97
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
101
102
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
103
104
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
105
106
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
107
108
109
110
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
113
114
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
115
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
116
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
117
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
118
119
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
120
  Lemma cmra_extend n x y1 y2 :
121
    {n} x  x {n} y1  y2 
122
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
123
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
124
125
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
131
132
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
133
Hint Mode Persistent + ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
134

135
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
136
137
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
138
Hint Mode Exclusive + ! : typeclass_instances.
139

Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
142
143
144
145
146
147
148
149
150
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
151
(** * CMRAs with a unit element *)
152
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
153
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
154
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
155
156
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  mixin_ucmra_pcore_unit : pcore   Some 
158
}.
159

160
Structure ucmraT := UCMRAT' {
161
162
163
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
164
  ucmra_pcore : PCore ucmra_car;
165
166
167
168
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
169
  ucmra_ofe_mixin : OfeMixin ucmra_car;
170
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
171
  ucmra_mixin : UCMRAMixin ucmra_car;
172
  _ : Type;
173
}.
174
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
175
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
176
177
178
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
Arguments ucmra_pcore : simpl never.
180
181
182
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
183
Arguments ucmra_ofe_mixin : simpl never.
184
185
186
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
187
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
188
189
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
190
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
191
  CMRAT A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A).
192
193
194
195
196
197
198
199
200
201
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
204
End ucmra_mixin.
205

206
(** * Discrete CMRAs *)
207
Class CMRADiscrete (A : cmraT) := {
208
209
210
211
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
212
(** * Morphisms *)
213
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
215
  cmra_monotone_validN n x : {n} x  {n} f x;
216
  cmra_monotone x y : x  y  f x  f y
217
}.
218
Arguments cmra_monotone_validN {_ _} _ {_} _ _ _.
219
Arguments cmra_monotone {_ _} _ {_} _ _ _.
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
(* Not all intended homomorphisms preserve validity, in particular it does not
hold for the [ownM] and [own] connectives. *)
Class CMRAHomomorphism {A B : cmraT} (f : A  B) := {
  cmra_homomorphism_ne n :> Proper (dist n ==> dist n) f;
  cmra_homomorphism x y : f (x  y)  f x  f y
}.
Arguments cmra_homomorphism {_ _} _ _ _ _.

Class UCMRAHomomorphism {A B : ucmraT} (f : A  B) := {
  ucmra_homomorphism :> CMRAHomomorphism f;
  ucmra_homomorphism_unit : f   
}.
Arguments ucmra_homomorphism_unit {_ _} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
235
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
236
Section cmra.
237
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
Implicit Types x y z : A.
239
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
240

241
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
242
243
244
245
246
247
248
249
250
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
251
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
253
254
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
255
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
258
259
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
260
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
261
262
263
264
265
266
267
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
268
269
270
271
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
292
293
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
294

Robbert Krebbers's avatar
Robbert Krebbers committed
295
296
297
298
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

299
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
301
302
303
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
305
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
306
307
308
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
309
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
310
311
312
313
314
315
316
317
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
318
319
320
321
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
326
327
328
329
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
330

331
332
333
334
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

335
(** ** Exclusive elements *)
336
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
337
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
338
339
340
341
342
343
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
344
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
345
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
346
347
348
349
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
350

351
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
352
353
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
355
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
357
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Global Instance cmra_included_trans: Transitive (@included A _ _).
359
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
360
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
361
Qed.
362
363
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
365
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
367
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
368

Robbert Krebbers's avatar
Robbert Krebbers committed
369
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
370
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
371
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
372
373
374
375
376
377
378
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
379
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
380
Lemma cmra_included_r x y : y  x  y.
381
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382

383
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
384
385
386
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
387
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
389
  exists cy; by rewrite Hcx.
Qed.
390
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
391
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
394
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
395
396
397
398
399
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
402
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
403

404
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
405
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
406
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
407
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
408
409
410
411
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
412
413
414
415
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
416

417
418
419
420
421
422
423
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
424
Lemma cmra_included_dist_l n x1 x2 x1' :
425
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Proof.
427
428
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Qed.
430

Robbert Krebbers's avatar
Robbert Krebbers committed
431
432
(** ** Total core *)
Section total_core.
433
  Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
436
437
438
439
440
441
442
443
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
444
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
445
446
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
447
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
448
449
450
451
452
453
454
455
456
457
458
459
460
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
461
462
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
493
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
494
495
  Proof.
    intros [z ->].
496
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
498
499
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
500
(** ** Timeless *)
501
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
503
Proof.
  intros ?? [x' ?].
504
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
505
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
506
Qed.
507
508
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
509
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
510
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
511
512
Proof.
  intros ??? z Hz.
513
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
514
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
515
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
516
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
517

518
519
520
521
522
523
524
525
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
  split; first by apply cmra_included_includedN.
527
528
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
530
End cmra.

531
532
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
549
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
550
      eauto using ucmra_unit_least, (persistent (:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
551
  Qed.
552
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
554
Hint Immediate cmra_unit_total.

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
581
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
613
614
615
616
617
618
619
620
621
622
623
624
625
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
626
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
627
628
629
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
630
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
631
632
633
634
635
636
637
638
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
639
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
640
641
642
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
643

644
(** * Properties about monotone functions *)
645
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
646
Proof. repeat split; by try apply _. Qed.
647
648
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
649
650
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
651
  - apply _. 
652
  - move=> n x Hx /=. by apply cmra_monotone_validN, cmra_monotone_validN.
653
  - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
654
Qed.
655

656
657
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
658
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
659
  Lemma cmra_monotoneN n x y : x {n} y  f x {n} f y.
660
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
661
    intros [z ->].
662
    apply cmra_included_includedN, (cmra_monotone f), cmra_included_l.
663
  Qed.
664
665
  Lemma cmra_monotone_valid x :  x   f x.
  Proof. rewrite !cmra_valid_validN; eauto using cmra_monotone_validN. Qed.
666
667
End cmra_monotone.

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
Instance cmra_homomorphism_id {A : cmraT} : CMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance cmra_homomorphism_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAHomomorphism f  CMRAHomomorphism g  CMRAHomomorphism (g  f).
Proof.
  split.
  - apply _. 
  - move=> x y /=. rewrite -(cmra_homomorphism g).
    by apply (ne_proper _), cmra_homomorphism.
Qed.

Instance cmra_homomorphism_proper {A B : cmraT} (f : A  B) :
  CMRAHomomorphism f  Proper (() ==> ()) f := λ _, ne_proper _.

Instance ucmra_homomorphism_id {A : ucmraT} : UCMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance ucmra_homomorphism_compose {A B C : ucmraT} (f : A  B) (g : B  C) :
  UCMRAHomomorphism f  UCMRAHomomorphism g  UCMRAHomomorphism (g  f).
Proof. split. apply _. by rewrite /= !ucmra_homomorphism_unit. Qed.

688
689
(** Functors *)
Structure rFunctor := RFunctor {
690
  rFunctor_car : ofeT  ofeT  cmraT;
691
692
693
694
695
696
697
698
699
700
701
702
703
704
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

705
706
707
Delimit Scope rFunctor_scope with RF.
Bind Scope rFunctor_scope with rFunctor.

708
709
710
Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

711
Definition rFunctor_diag (F: rFunctor) (A: ofeT) : cmraT := rFunctor_car F A A.
712
713
714
715
716
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
717
Coercion constRF : cmraT >-> rFunctor.
718
719
720
721

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

722
Structure urFunctor := URFunctor {
723
  urFunctor_car : ofeT  ofeT  ucmraT;
724
725
726
727
728
729
730
731
732
733
734
735
736
737
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

738
739
740
Delimit Scope urFunctor_scope with URF.
Bind Scope urFunctor_scope with urFunctor.

741
742
743
Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

744
Definition urFunctor_diag (F: urFunctor) (A: ofeT) : ucmraT := urFunctor_car F A A.
745
746
747
748
749
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
750
Coercion constURF : ucmraT >-> urFunctor.
751
752
753
754

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

755
756
757
758
759
760
761
762
763
764
765
766
767
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
768
  Lemma cmra_transport_core x : T (core x) = core (T x).
769
  Proof. by destruct H. Qed.
770
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
771
  Proof. by destruct H. Qed.
772
  Lemma cmra_transport_valid x :  T x   x.
773
774
775
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
776
777
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
778
779
End cmra_transport.

780
781
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
782
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
783
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
784
785
786
787
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
788
  (* monoid *)
789
790
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
791
792
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
793
  ra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
794
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
795
  ra_valid_op_l x y :  (x  y)   x
796
797
}.

798
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
799
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
800
  Context (ra_mix : RAMixin A).
801
  Existing Instances discrete_dist.
802

803
  Instance discrete_validN : ValidN A := λ n x,  x.
804
  Definition discrete_cmra_mixin : CMRAMixin A.