classes.v 2.74 KB
Newer Older
1
From iris.base_logic Require Export base_logic.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
2 3 4 5 6 7 8 9 10
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q : uPred M.

Class FromAssumption (p : bool) (P Q : uPred M) := from_assumption : ?p P  Q.
Global Arguments from_assumption _ _ _ {_}.

11 12 13
Class IntoPure (P : uPred M) (φ : Prop) := into_pure : P   φ.
Global Arguments into_pure : clear implicits.

14
Class FromPure (P : uPred M) (φ : Prop) := from_pure :  φ  P.
15
Global Arguments from_pure : clear implicits.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
16 17 18 19 20 21

Class IntoPersistentP (P Q : uPred M) := into_persistentP : P   Q.
Global Arguments into_persistentP : clear implicits.

Class IntoLater (P Q : uPred M) := into_later : P   Q.
Global Arguments into_later _ _ {_}.
22

Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
23 24 25 26 27 28 29 30 31 32 33 34
Class FromLater (P Q : uPred M) := from_later :  Q  P.
Global Arguments from_later _ _ {_}.

Class IntoWand (R P Q : uPred M) := into_wand : R  P - Q.
Global Arguments into_wand : clear implicits.

Class FromAnd (P Q1 Q2 : uPred M) := from_and : Q1  Q2  P.
Global Arguments from_and : clear implicits.

Class FromSep (P Q1 Q2 : uPred M) := from_sep : Q1  Q2  P.
Global Arguments from_sep : clear implicits.

35 36 37
Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
  into_and : P  if p then Q1  Q2 else Q1  Q2.
Global Arguments into_and : clear implicits.
38

39 40
Lemma mk_into_and_sep p P Q1 Q2 : (P  Q1  Q2)  IntoAnd p P Q1 Q2.
Proof. rewrite /IntoAnd=>->. destruct p; auto using sep_and. Qed.
41

42 43 44
Class FromOp {A : cmraT} (a b1 b2 : A) := from_op : b1  b2  a.
Global Arguments from_op {_} _ _ _ {_}.

Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Class IntoOp {A : cmraT} (a b1 b2 : A) := into_op : a  b1  b2.
Global Arguments into_op {_} _ _ _ {_}.

Class Frame (R P Q : uPred M) := frame : R  Q  P.
Global Arguments frame : clear implicits.

Class FromOr (P Q1 Q2 : uPred M) := from_or : Q1  Q2  P.
Global Arguments from_or : clear implicits.

Class IntoOr P Q1 Q2 := into_or : P  Q1  Q2.
Global Arguments into_or : clear implicits.

Class FromExist {A} (P : uPred M) (Φ : A  uPred M) :=
  from_exist : ( x, Φ x)  P.
Global Arguments from_exist {_} _ _ {_}.

Class IntoExist {A} (P : uPred M) (Φ : A  uPred M) :=
  into_exist : P   x, Φ x.
Global Arguments into_exist {_} _ _ {_}.
64

65 66
Class IntoExcept0 (P Q : uPred M) := into_except_0 : P   Q.
Global Arguments into_except_0 : clear implicits.
67

68 69
Class IsExcept0 (Q : uPred M) := is_except_0 :  Q  Q.
Global Arguments is_except_0 : clear implicits.
70

71
Class FromUpd (P Q : uPred M) := from_upd : (|==> Q)  P.
72
Global Arguments from_upd : clear implicits.
73

74 75 76
Class ElimUpd (P P' : uPred M) (Q Q' : uPred M) :=
  elim_upd : P  (P' - Q')  Q.
Global Arguments elim_upd _ _ _ _ {_}.
77

78 79
Lemma elim_upd_dummy P Q : ElimUpd P P Q Q.
Proof. by rewrite /ElimUpd wand_elim_r. Qed.
Robbert Krebbers's avatar
Oops!  
Robbert Krebbers committed
80
End classes.