constructions.tex 20.1 KB
Newer Older
1
% !TEX root = ./appendix.tex
Ralf Jung's avatar
Ralf Jung committed
2
\section{COFE constructions}
3

Ralf Jung's avatar
Ralf Jung committed
4
5
6
7
8
9
10
\subsection{Next (type-level later)}

Given a COFE $\cofe$, we define $\latert\cofe$ as follows:
\begin{align*}
  \latert\cofe \eqdef{}& \latertinj(\cofe) \\
  \latertinj(x) \nequiv{n} \latertinj(y) \eqdef{}& n = 0 \lor x \nequiv{n-1} y
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
$\latert(-)$ is a locally \emph{contractive} functor from $\COFEs$ to $\COFEs$.

\subsection{Uniform Predicates}

Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows:
\begin{align*}
  \UPred(\monoid) \eqdef{} \setComp{\pred: \mathbb{N} \times \monoid \to \mProp}{
  \begin{inbox}[c]
    (\All n, x, y. \pred(n, x) \land x \nequiv{n} y \Ra \pred(n, y)) \land {}\\
    (\All n, m, x, y. \pred(n, x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra \pred(m, y))
  \end{inbox}
}
\end{align*}
where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}.
$\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.

One way to understand this definition is to re-write it a little.
28
We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, we proposition either holds or does not hold.
Ralf Jung's avatar
Ralf Jung committed
29
30
\begin{align*}
  \SProp \eqdef{}& \psetdown{\mathbb{N}} \\
Ralf Jung's avatar
Ralf Jung committed
31
    \eqdef{}& \setComp{\prop \in \pset{\mathbb{N}}}{ \All n, m. n \geq m \Ra n \in \prop \Ra m \in \prop } \\
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
  \prop \nequiv{n} \propB \eqdef{}& \All m \leq n. m \in \prop \Lra m \in \propB
\end{align*}
Now we can rewrite $\UPred(\monoid)$ as monotone step-indexed predicates over $\monoid$, where the definition of a ``monotone'' function here is a little funny.
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
36
  \UPred(\monoid) \cong{}& \monoid \monra \SProp \\
Ralf Jung's avatar
Ralf Jung committed
37
38
39
     \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}{\All n, m, x, y. n \in \pred(x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra m \in \pred(y)}
\end{align*}
The reason we chose the first definition is that it is easier to work with in Coq.
Ralf Jung's avatar
Ralf Jung committed
40
41

\clearpage
42
43
\section{CMRA constructions}

Ralf Jung's avatar
Ralf Jung committed
44
45
46
\subsection{Product}
\label{sec:prodm}

47
Given a family $(M_i)_{i \in I}$ of CMRAs ($I$ finite), we construct a CMRA for the product $\prod_{i \in I} M_i$ by lifting everything pointwise.
Ralf Jung's avatar
Ralf Jung committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Frame-preserving updates on the $M_i$ lift to the product:
\begin{mathpar}
  \inferH{prod-update}
  {\melt \mupd_{M_i} \meltsB}
  {f[i \mapsto \melt] \mupd \setComp{ f[i \mapsto \meltB]}{\meltB \in \meltsB}}
\end{mathpar}

\subsection{Finite partial function}
\label{sec:fpfnm}

Given some countable $K$ and some CMRA $\monoid$, the set of finite partial functions $K \fpfn \monoid$ is equipped with a COFE and CMRA structure by lifting everything pointwise.

We obtain the following frame-preserving updates:
\begin{mathpar}
  \inferH{fpfn-alloc-strong}
  {\text{$G$ infinite} \and \melt \in \mval}
  {\emptyset \mupd \setComp{[\gname \mapsto \melt]}{\gname \in G}}

  \inferH{fpfn-alloc}
  {\melt \in \mval}
69
  {\emptyset \mupd \setComp{[\gname \mapsto \melt]}{\gname \in K}}
Ralf Jung's avatar
Ralf Jung committed
70
71
72
73
74

  \inferH{fpfn-update}
  {\melt \mupd \meltsB}
  {f[i \mapsto \melt] \mupd \setComp{ f[i \mapsto \meltB]}{\meltB \in \meltsB}}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
75
$K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
76

77
78
\subsection{Agreement}

Ralf Jung's avatar
Ralf Jung committed
79
Given some COFE $\cofe$, we define $\agm(\cofe)$ as follows:
Ralf Jung's avatar
Ralf Jung committed
80
81
\newcommand{\aginjc}{\mathrm{c}} % the "c" field of an agreement element
\newcommand{\aginjV}{\mathrm{V}} % the "V" field of an agreement element
Ralf Jung's avatar
Ralf Jung committed
82
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
83
  \agm(\cofe) \eqdef{}& \record{\aginjc : \mathbb{N} \to \cofe , \aginjV : \SProp} \\
Ralf Jung's avatar
Ralf Jung committed
84
  & \text{quotiented by} \\
Ralf Jung's avatar
Ralf Jung committed
85
86
87
  \melt \equiv \meltB \eqdef{}& \melt.\aginjV = \meltB.\aginjV \land \All n. n \in \melt.\aginjV \Ra \melt.\aginjc(n) \nequiv{n} \meltB.\aginjc(n) \\
  \melt \nequiv{n} \meltB \eqdef{}& (\All m \leq n. m \in \melt.\aginjV \Lra m \in \meltB.\aginjV) \land (\All m \leq n. m \in \melt.\aginjV \Ra \melt.\aginjc(m) \nequiv{m} \meltB.\aginjc(m)) \\
  \mval_n \eqdef{}& \setComp{\melt \in \monoid}{ n \in \melt.\aginjV \land \All m \leq n. \melt.\aginjc(n) \nequiv{m} \melt.\aginjc(m) } \\
Ralf Jung's avatar
Ralf Jung committed
88
  \mcore\melt \eqdef{}& \melt \\
Ralf Jung's avatar
Ralf Jung committed
89
  \melt \mtimes \meltB \eqdef{}& (\melt.\aginjc, \setComp{n}{n \in \melt.\aginjV \land n \in \meltB.\aginjV \land \melt \nequiv{n} \meltB })
Ralf Jung's avatar
Ralf Jung committed
90
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
91
$\agm(-)$ is a locally non-expansive functor from $\COFEs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
92

Ralf Jung's avatar
Ralf Jung committed
93
You can think of the $\aginjc$ as a \emph{chain} of elements of $\cofe$ that has to converge only for $n \in \aginjV$ steps.
94
The reason we store a chain, rather than a single element, is that $\agm(\cofe)$ needs to be a COFE itself, so we need to be able to give a limit for every chain of $\agm(\cofe)$.
Ralf Jung's avatar
Ralf Jung committed
95
However, given such a chain, we cannot constructively define its limit: Clearly, the $\aginjV$ of the limit is the limit of the $\aginjV$ of the chain.
96
But what to pick for the actual data, for the element of $\cofe$?
Ralf Jung's avatar
Ralf Jung committed
97
Only if $\aginjV = \mathbb{N}$ we have a chain of $\cofe$ that we can take a limit of; if the $\aginjV$ is smaller, the chain ``cancels'', \ie stops converging as we reach indices $n \notin \aginjV$.
98
To mitigate this, we apply the usual construction to close a set; we go from elements of $\cofe$ to chains of $\cofe$.
Ralf Jung's avatar
Ralf Jung committed
99

Ralf Jung's avatar
Ralf Jung committed
100
101
We define an injection $\aginj$ into $\agm(\cofe)$ as follows:
\[ \aginj(x) \eqdef \record{\mathrm c \eqdef \Lam \any. x, \mathrm V \eqdef \mathbb{N}} \]
Ralf Jung's avatar
Ralf Jung committed
102
103
There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
\begin{mathpar}
Ralf Jung's avatar
Ralf Jung committed
104
  \axiomH{ag-val}{\aginj(x) \in \mval_n}
105

Ralf Jung's avatar
Ralf Jung committed
106
  \axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
107
  
Ralf Jung's avatar
Ralf Jung committed
108
  \axiomH{ag-agree}{\aginj(x) \mtimes \aginj(y) \in \mval_n \Ra x \nequiv{n} y}
Ralf Jung's avatar
Ralf Jung committed
109
110
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
111
112
113
114
115
\subsection{One-shot}

The purpose of the one-shot CMRA is to lazily initialize the state of a ghost location.
Given some CMRA $\monoid$, we define $\oneshotm(\monoid)$ as follows:
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
116
  \oneshotm(\monoid) \eqdef{}& \ospending + \osshot(\monoid) + \munit + \bot \\
Ralf Jung's avatar
Ralf Jung committed
117
  \mval_n \eqdef{}& \set{\ospending, \munit} \cup \setComp{\osshot(\melt)}{\melt \in \mval_n}
Ralf Jung's avatar
Ralf Jung committed
118
119
\\%\end{align*}
%\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
120
121
122
  \osshot(\melt) \mtimes \osshot(\meltB) \eqdef{}& \osshot(\melt \mtimes \meltB) \\
  \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
  \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt)
Ralf Jung's avatar
Ralf Jung committed
123
\end{align*}%
Ralf Jung's avatar
Ralf Jung committed
124
The remaining cases of composition go to $\bot$.
Ralf Jung's avatar
Ralf Jung committed
125
126
127
128
\begin{align*}
  \mcore{\ospending} \eqdef{}& \munit & \mcore{\osshot(\melt)} \eqdef{}& \mcore\melt \\
  \mcore{\munit} \eqdef{}& \munit &  \mcore{\bot} \eqdef{}& \bot
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
129
130
131
132
133
134
135
136
137
138
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
  \axiom{\ospending \nequiv{n} \ospending}

  \infer{\melt \nequiv{n} \meltB}{\osshot(\melt) \nequiv{n} \osshot(\meltB)}

  \axiom{\munit \nequiv{n} \munit}

  \axiom{\bot \nequiv{n} \bot}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
139
$\oneshotm(-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
Ralf Jung's avatar
Ralf Jung committed
140

Ralf Jung's avatar
Ralf Jung committed
141
142
143
144
145
146
147
148
149
150
We obtain the following frame-preserving updates:
\begin{mathpar}
  \inferH{oneshot-shoot}
  {\melt \in \mval}
  {\ospending \mupd \osshot(\melt)}

  \inferH{oneshot-update}
  {\melt \mupd \meltsB}
  {\osshot(\melt) \mupd \setComp{\osshot(\meltB)}{\meltB \in \meltsB}}
\end{mathpar}
151

Ralf Jung's avatar
Ralf Jung committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
\subsection{Exclusive CMRA}

Given a cofe $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
\begin{align*}
  \exm(\cofe) \eqdef{}& \exinj(\cofe) + \munit + \bot \\
  \mval_n \eqdef{}& \setComp{\melt\in\exm(\cofe)}{\melt \neq \bot} \\
  \munit \mtimes \exinj(x) \eqdef{}& \exinj(x) \mtimes \munit \eqdef \exinj(x)
\end{align*}
The remaining cases of composition go to $\bot$.
\begin{align*}
  \mcore{\exinj(x)} \eqdef{}& \munit & \mcore{\munit} \eqdef{}& \munit &
  \mcore{\bot} \eqdef{}& \bot
\end{align*}
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
  \infer{x \nequiv{n} y}{\exinj(x) \nequiv{n} \exinj(y)}
168

Ralf Jung's avatar
Ralf Jung committed
169
  \axiom{\munit \nequiv{n} \munit}
170

Ralf Jung's avatar
Ralf Jung committed
171
172
173
174
175
176
177
178
179
180
181
182
183
  \axiom{\bot \nequiv{n} \bot}
\end{mathpar}
$\exm(-)$ is a locally non-expansive functor from $\COFEs$ to $\CMRAs$.

We obtain the following frame-preserving update:
\begin{mathpar}
  \inferH{ex-update}{}
  {\exinj(x) \mupd \exinj(y)}
\end{mathpar}



%TODO: These need syncing with Coq
184
185
186
187
188
189
190
191
192
193
194
195
196
197
% \subsection{Finite Powerset Monoid}

% Given an infinite set $X$, we define a monoid $\textmon{PowFin}$ with carrier $\mathcal{P}^{\textrm{fin}}(X)$ as follows:
% \[
% \melt \cdot \meltB \;\eqdef\; \melt \cup \meltB \quad \mbox{if } \melt \cap \meltB = \emptyset
% \]

% We obtain:
% \begin{mathpar}
% 	\inferH{PowFinUpd}{}
% 		{\emptyset \mupd \{ \{x\} \mid x \in X  \}}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{PowFinUpd}]
Ralf Jung's avatar
Ralf Jung committed
198
% 	Assume some frame $\melt_\f \sep \emptyset$. Since $\melt_\f$ is finite and $X$ is infinite, there exists an $x \notin \melt_\f$.
199
200
201
202
203
% 	Pick that for the result.
% \end{proof}

% The powerset monoids is cancellative.
% \begin{proof}[Proof of cancellativity]
Ralf Jung's avatar
Ralf Jung committed
204
205
206
207
% 	Let $\melt_\f \mtimes \melt = \melt_\f \mtimes \meltB \neq \mzero$.
% 	So we have $\melt_\f \sep \melt$ and $\melt_\f \sep \meltB$, and we have to show $\melt = \meltB$.
% 	Assume $x \in \melt$. Hence $x \in \melt_\f \mtimes \melt$ and thus $x \in \melt_\f \mtimes \meltB$.
% 	By disjointness, $x \notin \melt_\f$ and hence $x \in meltB$.
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
% 	The other direction works the same way.
% \end{proof}


% \subsection{Fractional monoid}
% \label{sec:fracm}

% Given a monoid $M$, we define a monoid representing fractional ownership of some piece $\melt \in M$.
% The idea is to preserve all the frame-preserving update that $M$ could have, while additionally being able to do \emph{any} update if we own the full state (as determined by the fraction being $1$).
% Let $\fracm{M}$ be the monoid with carrier $(((0, 1] \cap \mathbb{Q}) \times M) \uplus \{\munit\}$ and multiplication
% \begin{align*}
%  (q, a) \mtimes (q', a') &\eqdef (q + q', a \mtimes a') \qquad \mbox{if $q+q'\le 1$} \\
%  (q, a) \mtimes \munit &\eqdef (q,a) \\
%  \munit \mtimes (q,a) &\eqdef (q,a).
% \end{align*}

% We get the following frame-preserving update.
% \begin{mathpar}
% 	\inferH{FracUpdFull}
% 		{a, b \in M}
% 		{(1, a) \mupd (1, b)}
%   \and\inferH{FracUpdLocal}
% 	  {a \mupd_M B}
% 	  {(q, a) \mupd \{q\} \times B}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{FracUpdFull}]
% Assume some $f \sep (1, a)$. This can only be $f = \munit$, so showing $f \sep (1, b)$ is trivial.
% \end{proof}

% \begin{proof}[Proof of \ruleref{FracUpdLocal}]
% 	Assume some $f \sep (q, a)$. If $f = \munit$, then $f \sep (q, b)$ is trivial for any $b \in B$. Just pick the one we obtain by choosing $\munit_M$ as the frame for $a$.
240
	
Ralf Jung's avatar
Ralf Jung committed
241
242
% 	In the interesting case, we have $f = (q_\f, a_\f)$.
% 	Obtain $b$ such that $b \in B \land b \sep a_\f$.
243
244
245
246
247
% 	Then $(q, b) \sep f$, and we are done.
% \end{proof}

% $\fracm{M}$ is cancellative if $M$ is cancellative.
% \begin{proof}[Proof of cancellativitiy]
Ralf Jung's avatar
Ralf Jung committed
248
249
% If $\melt_\f = \munit$, we are trivially done.
% So let $\melt_\f = (q_\f, \melt_\f')$.
250
251
252
253
% If $\melt = \munit$, then $\meltB = \munit$ as otherwise the fractions could not match up.
% Again, we are trivially done.
% Similar so for $\meltB = \munit$.
% So let $\melt = (q_a, \melt')$ and $\meltB = (q_b, \meltB')$.
Ralf Jung's avatar
Ralf Jung committed
254
% We have $(q_\f + q_a, \melt_\f' \mtimes \melt') = (q_\f + q_b, \melt_\f' \mtimes \meltB')$.
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
% We have to show $q_a = q_b$ and $\melt' = \meltB'$.
% The first is trivial, the second follows from cancellativitiy of $M$.
% \end{proof}


% %\subsection{Disposable monoid}
% %
% %Given a monoid $M$, we construct a monoid where, having full ownership of an element $\melt$ of $M$, one can throw it away, transitioning to a dead element.
% %Let \dispm{M} be the monoid with carrier $\mcarp{M} \uplus \{ \disposed \}$ and multiplication
% %% The previous unit must remain the unit of the new monoid, as is is always duplicable and hence we could not transition to \disposed if it were not composable with \disposed
% %\begin{align*}
% %  \melt \mtimes \meltB &\eqdef \melt \mtimes_M \meltB & \IF \melt \sep[M] \meltB \\
% %  \disposed \mtimes \disposed &\eqdef \disposed \\
% %  \munit_M \mtimes \disposed &\eqdef \disposed \mtimes \munit_M \eqdef \disposed
% %\end{align*}
% %The unit is the same as in $M$.
% %
% %The frame-preserving updates are
% %\begin{mathpar}
% % \inferH{DispUpd}
% %   {a \in \mcarp{M} \setminus \{\munit_M\} \and a \mupd_M B}
% %   {a \mupd B}
% % \and
% % \inferH{Dispose}
% %  {a \in \mcarp{M} \setminus \{\munit_M\} \and \All b \in \mcarp{M}. a \sep b \Ra b = \munit_M}
% %  {a \mupd \disposed}
% %\end{mathpar}
% %
% %\begin{proof}[Proof of \ruleref{DispUpd}]
% %Assume a frame $f$. If $f = \disposed$, then $a = \munit_M$, which is a contradiction.
% %Thus $f \in \mcarp{M}$ and we can use $a \mupd_M B$.
% %\end{proof}
% %
% %\begin{proof}[Proof of \ruleref{Dispose}]
% %The second premiss says that $a$ has no non-trivial frame in $M$. To show the update, assume a frame $f$ in $\dispm{M}$. Like above, we get $f \in \mcarp{M}$, and thus $f = \munit_M$. But $\disposed \sep \munit_M$ is trivial, so we are done.
% %\end{proof}

% \subsection{Authoritative monoid}\label{sec:auth}

% Given a monoid $M$, we construct a monoid modeling someone owning an \emph{authoritative} element $x$ of $M$, and others potentially owning fragments $\melt \le_M x$ of $x$.
% (If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.)
% Let $\auth{M}$ be the monoid with carrier
% \[
% 	\setComp{ (x, \melt) }{ x \in \mcarp{\exm{\mcarp{M}}} \land \melt \in \mcarp{M} \land (x = \munit_{\exm{\mcarp{M}}} \lor \melt \leq_M x) }
% \]
% and multiplication
% \[
% (x, \melt) \mtimes (y, \meltB) \eqdef
%      (x \mtimes y, \melt \mtimes \meltB) \quad \mbox{if } x \sep y \land \melt \sep \meltB \land (x \mtimes y = \munit_{\exm{\mcarp{M}}} \lor \melt \mtimes \meltB \leq_M x \mtimes y)
% \]
% Note that $(\munit_{\exm{\mcarp{M}}}, \munit_M)$ is the unit and asserts no ownership whatsoever, but $(\munit_{M}, \munit_M)$ asserts that the authoritative element is $\munit_M$.

% Let $x, \melt \in \mcarp M$.
% We write $\authfull x$ for full ownership $(x, \munit_M):\auth{M}$ and $\authfrag \melt$ for fragmental ownership $(\munit_{\exm{\mcarp{M}}}, \melt)$ and $\authfull x , \authfrag \melt$ for combined ownership $(x, \melt)$.
% If $x$ or $a$ is $\mzero_{M}$, then the sugar denotes $\mzero_{\auth{M}}$.

% \ralf{This needs syncing with the Coq development.}
% The frame-preserving update involves a rather unwieldy side-condition:
% \begin{mathpar}
% 	\inferH{AuthUpd}{
Ralf Jung's avatar
Ralf Jung committed
315
% 		\All\melt_\f\in\mcar{\monoid}. \melt\sep\meltB \land \melt\mtimes\melt_\f \le \meltB\mtimes\melt_\f \Ra \melt'\mtimes\melt_\f \le \melt'\mtimes\meltB \and
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
% 		\melt' \sep \meltB
% 	}{
% 		\authfull \melt \mtimes \meltB, \authfrag \melt \mupd \authfull \melt' \mtimes \meltB, \authfrag \melt'
% 	}
% \end{mathpar}
% We therefore derive two special cases.

% \paragraph{Local frame-preserving updates.}

% \newcommand\authupd{f}%
% Following~\cite{scsl}, we say that $\authupd: \mcar{M} \ra \mcar{M}$ is \emph{local} if
% \[
% 	\All a, b \in \mcar{M}. a \sep b \land \authupd(a) \neq \mzero \Ra \authupd(a \mtimes b) = \authupd(a) \mtimes b
% \]
% Then,
% \begin{mathpar}
% 	\inferH{AuthUpdLocal}
% 	{\text{$\authupd$ local} \and \authupd(\melt)\sep\meltB}
% 	{\authfull \melt \mtimes \meltB, \authfrag \melt \mupd \authfull \authupd(\melt) \mtimes \meltB, \authfrag \authupd(\melt)}
% \end{mathpar}

% \paragraph{Frame-preserving updates on cancellative monoids.}

% Frame-preserving updates are also possible if we assume $M$ cancellative:
% \begin{mathpar}
%  \inferH{AuthUpdCancel}
%   {\text{$M$ cancellative} \and \melt'\sep\meltB}
%   {\authfull \melt \mtimes \meltB, \authfrag \melt \mupd \authfull \melt' \mtimes \meltB, \authfrag \melt'}
% \end{mathpar}

% \subsection{Fractional heap monoid}
% \label{sec:fheapm}

% By combining the fractional, finite partial function, and authoritative monoids, we construct two flavors of heaps with fractional permissions and mention their important frame-preserving updates.
% Hereinafter, we assume the set $\textdom{Val}$ of values is countable.

% Given a set $Y$, define $\FHeap(Y) \eqdef \textdom{Val} \fpfn \fracm(Y)$ representing a fractional heap with codomain $Y$.
% From \S\S\ref{sec:fracm} and~\ref{sec:fpfunm} we obtain the following frame-preserving updates as well as the fact that $\FHeap(Y)$ is cancellative.
% \begin{mathpar}
% 	\axiomH{FHeapUpd}{h[x \mapsto (1, y)] \mupd h[x \mapsto (1, y')]} \and
% 	\axiomH{FHeapAlloc}{h \mupd \{\, h[x \mapsto (1, y)] \mid x \in \textdom{Val} \,\}}
% \end{mathpar}
% We will write $qh$ with $h : \textsort{Val} \fpfn Y$ for the function in $\FHeap(Y)$ mapping every $x \in \dom(h)$ to $(q, h(x))$, and everything else to $\munit$.

% Define $\AFHeap(Y) \eqdef \auth{\FHeap(Y)}$ representing an authoritative fractional heap with codomain $Y$.
% We easily obtain the following frame-preserving updates.
% \begin{mathpar}
% 	\axiomH{AFHeapUpd}{
% 		(\authfull h[x \mapsto (1, y)], \authfrag [x \mapsto (1, y)]) \mupd (\authfull h[x \mapsto (1, y')], \authfrag [x \mapsto (1, y')])
% 	}
% 	\and
% 	\inferH{AFHeapAdd}{
% 		x \notin \dom(h)
% 	}{
% 		\authfull h \mupd (\authfull h[x \mapsto (q, y)], \authfrag [x \mapsto (q, y)])
% 	}
% 	\and
% 	\axiomH{AFHeapRemove}{
% 		(\authfull h[x \mapsto (q, y)], \authfrag [x \mapsto (q, y)]) \mupd \authfull h
% 	}
% \end{mathpar}

% \subsection{STS with tokens monoid}
% \label{sec:stsmon}

% Given a state-transition system~(STS) $(\STSS, \ra)$, a set of tokens $\STSS$, and a labeling $\STSL: \STSS \ra \mathcal{P}(\STST)$ of \emph{protocol-owned} tokens for each state, we construct a monoid modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens.

% The construction follows the idea of STSs as described in CaReSL \cite{caresl}.
% We first lift the transition relation to $\STSS \times \mathcal{P}(\STST)$ (implementing a \emph{law of token conservation}) and define upwards closure:
% \begin{align*}
%  (s, T) \ra (s', T') \eqdef&\, s \ra s' \land \STSL(s) \uplus T = \STSL(s') \uplus T' \\
%  \textsf{frame}(s, T) \eqdef&\, (s, \STST \setminus (\STSL(s) \uplus T)) \\
%  \upclose(S, T) \eqdef&\, \setComp{ s' \in \STSS}{\exists s \in S.\; \textsf{frame}(s, T) \ststrans \textsf{frame}(s', T) }
% \end{align*}

% \noindent
% We have
% \begin{quote}
% 	If $(s, T) \ra (s', T')$\\
Ralf Jung's avatar
Ralf Jung committed
395
396
% 	and $T_\f \sep (T \uplus \STSL(s))$,\\
% 	then $\textsf{frame}(s, T_\f) \ra \textsf{frame}(s', T_\f)$.
397
398
% \end{quote}
% \begin{proof}
Ralf Jung's avatar
Ralf Jung committed
399
% This follows directly by framing the tokens in $\STST \setminus (T_\f \uplus T \uplus \STSL(s))$ around the given transition, which yields $(s, \STST \setminus (T_\f \uplus \STSL{T}(s))) \ra (s', T' \uplus (\STST \setminus (T_\f \uplus T \uplus \STSL{T}(s))))$.
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
% This is exactly what we have to show, since we know $\STSL(s) \uplus T = \STSL(s') \uplus T'$.
% \end{proof}

% Let $\STSMon{\STSS}$ be the monoid with carrier
% \[
% 	\setComp{ (s, S, T) \in \exm{\STSS} \times \mathcal{P}(\STSS) \times \mathcal{P}(\STST) }{ \begin{aligned} &(s = \munit \lor s \in S) \land \upclose(S, T) = S   \land{} \\& S \neq \emptyset \land \All s \in S. \STSL(s) \sep T  \end{aligned} }
% \]
% and multiplication
% \[
% 	(s, S, T) \mtimes (s', S', T') \eqdef (s'' \eqdef s \mtimes_{\exm{\STSS}} s', S'' \eqdef S \cap S', T'' \eqdef T \cup T') \quad \text{if }\begin{aligned}[t] &(s = \munit \lor s' = \munit) \land T \sep T' \land{} \\& S'' \neq \emptyset \land (s'' \neq \munit \Ra s'' \in S'') \end{aligned}
% \]

% Some sugar makes it more convenient to assert being at least in a certain state and owning some tokens: $(s, T) : \STSMon{\STSS} \eqdef (\munit, \upclose(\{s\}, T), T) : \STSMon{\STSS}$, and
% $s : \STSMon{\STSS} \eqdef (s, \emptyset) : \STSMon{\STSS}$.

% We will need the following frame-preserving update.
% \begin{mathpar}
% 	\inferH{StsStep}{(s, T) \ststrans (s', T')}
% 	 {(s, S, T) \mupd (s', \upclose(\{s'\}, T'), T')}
% \end{mathpar}
% \begin{proof}[Proof of \ruleref{StsStep}]
Ralf Jung's avatar
Ralf Jung committed
421
422
% Assume some upwards-closed $S_\f, T_\f$ (the frame cannot be authoritative) s.t.\ $s \in S_\f$ and $T_\f \sep (T \uplus \STSL(s))$. We have to show that this frame combines with our final monoid element, which is the case if $s' \in S_\f$ and $T_\f \sep T'$.
% By upward-closedness, it suffices to show $\textsf{frame}(s, T_\f) \ststrans \textsf{frame}(s', T_\f)$.
423
424
% This follows by induction on the path $(s, T) \ststrans (s', T')$, and using the lemma proven above for each step.
% \end{proof}
425

426
427
428
429
430

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "iris"
%%% End: