frac.v 9.69 KB
Newer Older
1
From Coq.QArith Require Import Qcanon.
2
3
From iris.algebra Require Export cmra.
From iris.algebra Require Import upred.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
6
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.

7
8
9
10
Inductive frac {A : Type} :=
  | Frac : Qp  A  frac
  | FracUnit : frac.
Arguments frac _ : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Instance maybe_Frac {A} : Maybe2 (@Frac A) := λ x,
  match x with Frac q a => Some (q,a) | _ => None end.
Instance: Params (@Frac) 2.

Section cofe.
Context {A : cofeT}.
Implicit Types a b : A.
Implicit Types x y : frac A.

(* Cofe *)
Inductive frac_equiv : Equiv (frac A) :=
  | Frac_equiv q1 q2 a b : q1 = q2  a  b  Frac q1 a  Frac q2 b
  | FracUnit_equiv : FracUnit  FracUnit.
Existing Instance frac_equiv.
Inductive frac_dist : Dist (frac A) :=
  | Frac_dist q1 q2 a b n : q1 = q2  a {n} b  Frac q1 a {n} Frac q2 b
  | FracUnit_dist n : FracUnit {n} FracUnit.
Existing Instance frac_dist.

Global Instance Frac_ne q n : Proper (dist n ==> dist n) (@Frac A q).
Proof. by constructor. Qed.
Global Instance Frac_proper q : Proper (() ==> ()) (@Frac A q).
Proof. by constructor. Qed.
Global Instance Frac_inj : Inj2 (=) () () (@Frac A).
Proof. by inversion_clear 1. Qed.
Global Instance Frac_dist_inj n : Inj2 (=) (dist n) (dist n) (@Frac A).
Proof. by inversion_clear 1. Qed.

Program Definition frac_chain (c : chain (frac A)) (q : Qp) (a : A)
40
    (H : maybe2 Frac (c 0) = Some (q,a)) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
  {| chain_car n := match c n return _ with Frac _ b => b | _ => a end |}.
Next Obligation.
43
44
45
  intros c q a ? n i ?; simpl.
  destruct (c 0) eqn:?; simplify_eq/=.
  by feed inversion (chain_cauchy c n i).
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
Qed.
Instance frac_compl : Compl (frac A) := λ c,
48
  match Some_dec (maybe2 Frac (c 0)) with
Robbert Krebbers's avatar
Robbert Krebbers committed
49
  | inleft (exist (q,a) H) => Frac q (compl (frac_chain c q a H))
50
  | inright _ => c 0
Robbert Krebbers's avatar
Robbert Krebbers committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  end.
Definition frac_cofe_mixin : CofeMixin (frac A).
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; subst; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done.
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [q a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; done || apply dist_S.
  - intros n c; unfold compl, frac_compl.
65
66
67
68
    destruct (Some_dec (maybe2 Frac (c 0))) as [[[q a] Hx]|].
    { assert (c 0 = Frac q a) by (by destruct (c 0); simplify_eq/=).
      assert ( b, c n = Frac q b) as [y Hy].
      { feed inversion (chain_cauchy c 0 n);
Robbert Krebbers's avatar
Robbert Krebbers committed
69
70
71
          eauto with lia congruence f_equal. }
      rewrite Hy; constructor; auto.
      by rewrite (conv_compl n (frac_chain c q a Hx)) /= Hy. }
72
73
    feed inversion (chain_cauchy c 0 n); first lia;
       constructor; destruct (c 0); simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Qed.
Canonical Structure fracC : cofeT := CofeT frac_cofe_mixin.
Global Instance frac_discrete : Discrete A  Discrete fracC.
Proof. by inversion_clear 2; constructor; done || apply (timeless _). Qed.
Global Instance frac_leibniz : LeibnizEquiv A  LeibnizEquiv (frac A).
Proof. by destruct 2; f_equal; done || apply leibniz_equiv. Qed.

Global Instance Frac_timeless q (a : A) : Timeless a  Timeless (Frac q a).
Proof. by inversion_clear 2; constructor; done || apply (timeless _). Qed.
Global Instance FracUnit_timeless : Timeless (@FracUnit A).
Proof. by inversion_clear 1; constructor. Qed.
End cofe.

Arguments fracC : clear implicits.

(* Functor on COFEs *)
Definition frac_map {A B} (f : A  B) (x : frac A) : frac B :=
  match x with
  | Frac q a => Frac q (f a) | FracUnit => FracUnit
  end.
Instance: Params (@frac_map) 2.

Lemma frac_map_id {A} (x : frac A) : frac_map id x = x.
Proof. by destruct x. Qed.
Lemma frac_map_compose {A B C} (f : A  B) (g : B  C) (x : frac A) :
  frac_map (g  f) x = frac_map g (frac_map f x).
Proof. by destruct x. Qed.
Lemma frac_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  frac_map f x  frac_map g x.
Proof. by destruct x; constructor. Qed.
Instance frac_map_cmra_ne {A B : cofeT} n :
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@frac_map A B).
Proof. intros f f' Hf; destruct 1; constructor; by try apply Hf. Qed.
Definition fracC_map {A B} (f : A -n> B) : fracC A -n> fracC B :=
  CofeMor (frac_map f).
Instance fracC_map_ne A B n : Proper (dist n ==> dist n) (@fracC_map A B).
Proof. intros f f' Hf []; constructor; by try apply Hf. Qed.

Section cmra.
Context {A : cmraT}.
Implicit Types a b : A.
Implicit Types x y : frac A.

(* CMRA *)
Instance frac_valid : Valid (frac A) := λ x,
  match x with Frac q a => (q  1)%Qc   a | FracUnit => True end.
Instance frac_validN : ValidN (frac A) := λ n x,
  match x with Frac q a => (q  1)%Qc  {n} a | FracUnit => True end.
Global Instance frac_empty : Empty (frac A) := FracUnit.
Ralf Jung's avatar
Ralf Jung committed
123
Instance frac_core : Core (frac A) := λ _, .
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
Instance frac_op : Op (frac A) := λ x y,
  match x, y with
  | Frac q1 a, Frac q2 b => Frac (q1 + q2) (a  b)
  | Frac q a, FracUnit | FracUnit, Frac q a => Frac q a
  | FracUnit, FracUnit => FracUnit
  end.

Lemma Frac_op q1 q2 a b : Frac q1 a  Frac q2 b = Frac (q1 + q2) (a  b).
Proof. done. Qed.

Definition frac_cmra_mixin : CMRAMixin (frac A).
Proof.
  split.
  - intros n []; destruct 1; constructor; by cofe_subst. 
  - constructor.
  - do 2 destruct 1; split; by cofe_subst.
  - intros [q a|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [q a|]; destruct 1; split; auto using cmra_validN_S.
  - intros [q1 a1|] [q2 a2|] [q3 a3|]; constructor; by rewrite ?assoc.
  - intros [q1 a1|] [q2 a2|]; constructor; by rewrite 1?comm ?[(q1+_)%Qp]comm.
  - intros []; by constructor.
  - done.
  - by exists FracUnit.
  - intros n [q1 a1|] [q2 a2|]; destruct 1; split; eauto using cmra_validN_op_l.
    trans (q1 + q2)%Qp; simpl; last done.
    rewrite -{1}(Qcplus_0_r q1) -Qcplus_le_mono_l; auto using Qclt_le_weak.
  - intros n [q a|] y1 y2 Hx Hx'; last first.
    { by exists (, ); destruct y1, y2; inversion_clear Hx'. }
    destruct Hx, y1 as [q1 b1|], y2 as [q2 b2|].
    + apply (inj2 Frac) in Hx'; destruct Hx' as [-> ?].
      destruct (cmra_extend n a b1 b2) as ([z1 z2]&?&?&?); auto.
      exists (Frac q1 z1,Frac q2 z2); by repeat constructor.
    + exists (Frac q a, ); inversion_clear Hx'; by repeat constructor.
    + exists (, Frac q a); inversion_clear Hx'; by repeat constructor.
    + exfalso; inversion_clear Hx'.
Qed.
160
Canonical Structure fracR : cmraT := CMRAT frac_cofe_mixin frac_cmra_mixin.
Ralf Jung's avatar
Ralf Jung committed
161
Global Instance frac_cmra_unit : CMRAUnit fracR.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Proof. split. done. by intros []. apply _. Qed.
163
Global Instance frac_cmra_discrete : CMRADiscrete A  CMRADiscrete fracR.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
Proof.
  split; first apply _.
  intros [q a|]; destruct 1; split; auto using cmra_discrete_valid.
Qed.

Lemma frac_validN_inv_l n y a : {n} (Frac 1 a  y)  y = .
Proof.
  destruct y as [q b|]; [|done]=> -[Hq ?]; destruct (Qcle_not_lt _ _ Hq).
  by rewrite -{1}(Qcplus_0_r 1) -Qcplus_lt_mono_l.
Qed.
Lemma frac_valid_inv_l y a :  (Frac 1 a  y)  y = .
Proof. intros. by apply frac_validN_inv_l with 0 a, cmra_valid_validN. Qed.

(** Internalized properties *)
Lemma frac_equivI {M} (x y : frac A) :
179
  (x  y)  (match x, y with
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
               | Frac q1 a, Frac q2 b => q1 = q2  a  b
               | FracUnit, FracUnit => True
               | _, _ => False
183
               end : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
184
185
186
187
188
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; destruct 1; try constructor.
Qed.
Lemma frac_validI {M} (x : frac A) :
189
  ( x)  (if x is Frac q a then  (q  1)%Qc   a else True : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
Proof. uPred.unseal. by destruct x. Qed.

(** ** Local updates *)
Global Instance frac_local_update_full p a :
  LocalUpdate (λ x, if x is Frac q _ then q = 1%Qp else False) (λ _, Frac p a).
Proof.
  split; first by intros ???.
  by intros n [q b|] y; [|done]=> -> /frac_validN_inv_l ->.
Qed.
Global Instance frac_local_update `{!LocalUpdate Lv L} :
  LocalUpdate (λ x, if x is Frac _ a then Lv a else False) (frac_map L).
Proof.
  split; first apply _. intros n [p a|] [q b|]; simpl; try done.
  intros ? [??]; constructor; [done|by apply (local_updateN L)].
Qed.

(** Updates *)
Lemma frac_update_full (a1 a2 : A) :  a2  Frac 1 a1 ~~> Frac 1 a2.
Proof.
  move=> ? n y /frac_validN_inv_l ->. split. done. by apply cmra_valid_validN.
Qed.
Lemma frac_update (a1 a2 : A) p : a1 ~~> a2  Frac p a1 ~~> Frac p a2.
Proof.
  intros Ha n [q b|] [??]; split; auto.
Ralf Jung's avatar
Ralf Jung committed
214
  apply cmra_validN_op_l with (core a1), Ha. by rewrite cmra_core_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
Qed.
End cmra.

218
Arguments fracR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
220
221
222
223
224
225
226

(* Functor *)
Instance frac_map_cmra_monotone {A B : cmraT} (f : A  B) :
  CMRAMonotone f  CMRAMonotone (frac_map f).
Proof.
  split; try apply _.
  - intros n [p a|]; destruct 1; split; auto using validN_preserving.
  - intros [q1 a1|] [q2 a2|] [[q3 a3|] Hx];
Ralf Jung's avatar
Ralf Jung committed
227
      inversion Hx; setoid_subst; try apply: cmra_unit_least; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
229
230
231
232
    destruct (included_preserving f a1 (a1  a3)) as [b ?].
    { by apply cmra_included_l. }
    by exists (Frac q3 b); constructor.
Qed.

233
234
235
Program Definition fracRF (F : rFunctor) : rFunctor := {|
  rFunctor_car A B := fracR (rFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := fracC_map (rFunctor_map F fg)
Robbert Krebbers's avatar
Robbert Krebbers committed
236
|}.
237
238
239
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply fracC_map_ne, rFunctor_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
Next Obligation.
241
242
  intros F A B x. rewrite /= -{2}(frac_map_id x).
  apply frac_map_ext=>y; apply rFunctor_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
Qed.
Next Obligation.
245
246
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -frac_map_compose.
  apply frac_map_ext=>y; apply rFunctor_compose.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Qed.
248
249
250
251
252
253

Instance fracRF_contractive F :
  rFunctorContractive F  rFunctorContractive (fracRF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply fracC_map_ne, rFunctor_contractive.
Qed.